Если сложить яблоки Бориса и Марата и разделить их на 4 (Марат+Борис+друг1+друг2), то получится целое число.
Итак, возможные варианты количества яблок: У Бориса 12,13,14 У Марата 10,11,12
Теперь будем методом "веера" складывать яблоки Бориса и Марата и получим ответ: 12+10=22 (не делится на 4) 12+11=23 (не делится на 4) 12+12=24 (делится на 4, ответ 6)
13+10=23 (не делится на 4) 13+11=24 (делится на 4, ответ 6) 13+12=25 (не делится на 4)
14+10=24 (делится на 4, ответ 6) 14+11=25 (не делится на 4) 14+12=26 (не делится на 4)
В результате имеем следующие возможные количества яблок у обоих мльчиков Борис Марат 12 12 13 11 14 10
Решение делим на две части: I. доказываем монотонный прирост и ограниченность II. находим предел последовательности
Часть I: монотонность доказываем по индукции: Проверка: Предполагаем справедливость неравенства для любого Доказываем для : Монотонный прирост доказан.
Ограниченность сверху:
Условие выполняется для , по индукции получаем справедливость для любого . (, потому можно извлечь корень) (*) Последовательность монотонна и ограниченна, следовательно сходится к супремуму.
Часть II. Определим . Из (*) следует: , но для больших выполняется (Коши), следовательно Подставялем в рекурсию и получаем: Из монотонности и следует . Получаем:
(**) Как я "угадал" верхний предел для доказательства ограниченности в первой части? - Сначала решил часть II, и выбрал подходящее значение. Важно помнить: без части I, часть II не имеет сысла!! Потому доказательство нужно предоставлять именно в таком порядке и в полном объёме.
Множество делителей 1, 19 - число простое.
Множество крастных числе 19 записывается формулой 19*n