300 м² + 2 га < 600 а : 2
[1 га = 10 000 м²]
2 га = 2 * 10 000 = 20 000 м²
300 м² + 2 га = 300 м² + 20 000 м² = 20 300 м²
600 а : 2 = 300 ар
[1 ар = 100 м²]
300 ар = 300 * 100 = 30 000 м²
2 см³ - 100 мм³ > 1 дм³ - 200 см²
[1 см = 10 мм]
[1 см³ = 1 см * 1 см * 1 см = 10 мм * 10 мм * 10 мм = 1000 мм³]
2 см³ = 2 * 1000 = 2000 мм³
2 см³ - 100 мм³ = 2000 мм³ - 100 мм³ = 1900 мм³
[1 дм = 10 см]
[1 дм³ = 1 дм * 1 дм * 1 дм = 10 см * 10 см * 10 см = 1000 см³]
1 дм³ - 200 см³ = 1000 см³ - 200 см³ = 800 см³
1000 см³ - 1 дм³ < 800 м² : 4 м
[1 дм = 10 см]
[1 дм³ = 1 дм * 1 дм * 1 дм = 10 см * 10 см * 10 см = 1000 см³]
1000 см³ - 1 дм³ = 1000 см³ - 1000 см³ = 0
800 м² : 4 м = 200 м
2000 дм³ + 200 м³ > 200 см³ + 2000 см³
[1 м = 10 дм]
[1 м³ = 1 м * 1 м * 1 м = 10 дм * 10 дм * 10 дм = 1000 дм³]
200 м³ = 200 * 1000 = 200 000 дм³
2000 дм³ + 200 м³ = 2000 дм³ + 200 000 дм³ = 202 000 дм³
200 см³ + 2000 см³ = 2200 см³
[1 дм = 10 см]
[1дм³ = 1 дм * 1 дм * 1 дм = 10 см * 10 см * 10 см = 1000 см³]
202 000 дм³ = 202 000 * 1000 = 202 000 000 см³
Пошаговое объяснение:
/
Чтобы найти линейный угол двугранного угла, необходимо построить плоскость ⊥ ребру BC.
Опустим AE ⊥ BC, DE ⊥ BC по теореме о трех перпендикулярах, где AE - проекция, DE - наклонная. BC - прямая проведенная через основание наклонной и перпендикулярная проекции.
AE и DE - находятся в одной плоскости и пересекаются, ВС - перпендикулярна AE и DE ⇒ перпендикулярна плоскости AED ⇒∠AED - линейный угол двугранного угла ∠ABCD.
2) ΔABC - равнобедренный, т.к. AB = AC = 10 см ⇒ опущенный перпендикуляр AE есть медиана ⇒ EC = DC/2 = 6 см.
3) ΔAEC - прямоугольный
По т. Пифагора
(см)
4) т.к. AD = AE = 8(см) ⇒ ΔADE равнобедренный.
ΔADE - прямоугольный и равнобедренный ⇒ ∠AED = 45°
ответ: ∠AED = 45°