Уполины было 10 руб. сколько денег осталось у полины если она купила мороженое за 7 руб. выдели в тексте условия что нужно узнать реши заменить число 10 числом 8 а число 7 числом 6 прочитай и реши новую
Один катет обозначим за х, тогда второй - х+14. по теореме Пифагора: х^2 + (x+14)^2=26^2 х^2+х^2+28x+196=676 2*х^2+28x+196-676=0 2*х^2+28x -480=0 | :4 х^2/2+7x-120=0 D = 49+4*1/2*120=49+240=289 x1=(-7+17)/(2*1/2)=10 x2=(-7-17)/(2*1/2)=-24 - длина отрицательной быть не может, ответ не подходит.
Первое решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 = √6/2. Для площади S этого треугольника имеют место равенства . Откуда находим AH = √3/3
Второе решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 =√6/2 . Треугольники AOA1 иHOA подобны по трем углам. Следовательно, AA1:OA1 = AH:AO. Откуда находим AH = √3/3.
Третье решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 =√6/2 . Откуда sin угла AOA1=√6/3 и, следовательно, AH=AO* sin угла AOH=√3/3
Осталось у Полины
ответ: 3 руб осталось у Полины.
Если заменить 10 числом 8, а 7 шестью, то нужно вычесть из восьми 6.
8-6=2 руб
Осталось у Полины
ответ: 2 рубля осталось у Полины.