Имеем многочлен 
Корнями многочлена
называют корни уравнения

Имеем уравнение пятого порядка. Попробуем его решить с теоремы Безу.
Суть этой теоремы в том, что если уравнение вида с ненулевым свободным членом имеет некий корень , принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.
Выпишем все делители свободного члена: 
Подставим
в корень уравнения и получим:

— неправда
Подставим
в корень уравнения и получим:

— неправда
Подставим
в корень уравнения и получим:

— правда
Следовательно,
— один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком на
(см. вложение).
После этого исходное уравнение можно записать разложив на множители:

Решаем второе уравнение:









Рациональные корни: 
Имеем многочлен 
Корнями многочлена
называют корни уравнения

Имеем уравнение пятого порядка. Попробуем его решить с теоремы Безу.
Суть этой теоремы в том, что если уравнение вида с ненулевым свободным членом имеет некий корень , принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.
Выпишем все делители свободного члена: 
Подставим
в корень уравнения и получим:

— неправда
Подставим
в корень уравнения и получим:

— неправда
Подставим
в корень уравнения и получим:

— правда
Следовательно,
— один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком на
(см. вложение).
После этого исходное уравнение можно записать разложив на множители:

Решаем второе уравнение:









Рациональные корни: 
2).8т4ц-23ц82кг=8400-2382кг=6018кг=6т18кг
3).40000см2·6=240000см/2=24м/2
4).1ч:3=60мин:3=20мин