Втрех мешках содержится 1,97ц муки. массы муки в первом и втором мешках одинаковы.но масса муки в третьем мешке на0,11ц больше чем в первом.сколько муки в каждом из мешков? решение:
Установите, какова область определения выражений, если рассматривать их на множестве действительных чисел:
а) (3 - у) : 64;6) 64 :(3 -у); в) (5 +х) : (х- 12). Известно, что выражение называется по своему последнему действию. Укажите порядок действий и дайте название каждому выражению: Выражение Название выражения (12·5 + 3:(2+7))·18 (23 - 7·6 - 4+ 15)׃(17-6) 21 + (35·3:8 -14:5) 19 - 8:4 + 5 Выясните, являются ли выражения 3(4 - х) и 12 - 3хтождественно равными на множестве: а) {1, 2, 3, 4};б) действительных чисел. Какие из следующих равенств являются тождествами на множестве действительных чисел: а) 3р + 5m = 5m + 3р; в) 3р · 5m = 5m · 3р; б) 3р – 5m = 5m - 3р; г) 3р: 5m = 5m:3р? Обоснуйте каждый шаг в преобразованиях следующих выражений: а) 324·5 = (300+20+4) · 5 = 300· 5+20·5+4·5 = 500+100+20 = 1500+ 120= 1620; б) 97·12 = (100 - 3) · 12 = 100 ·12 - 3·12 = 1200 - 36 = 1100+(100 - 36) =1164; в) 5(1-2х) +10х = 5 - 10х+10х = 5. Упростите выражение путем тождественных преобразований: а) 6(2аb- 3) + 2а (6b - 5);б) (12а- 16b):4 - (10а- 4b). Сравните значения выражений, не выполняя действий: а) (30 + 56) ·5 и 30·5 + 56·5; б) (19 + 4) ·7 и 19·7 + 10·7; в) (14 - 7) ·6 и 16·6 - 7·6; г) (18 - 9) ·7 и 18·7 - 11·7. Решите задачу; решение запишите в виде выражения: На туристическую базу прибыли в один день 150 туристов, на другой день 170. Чтобы пойти по маршрутам, 200 туристов разбились на группы, по 20 человек в каждой, а остальные по 15 человек в группе. Сколько получилось групп? Среди следующих записей найдите числовые равенства и неравенства: а) 3х + 4=57:3; б) 34 - 48:12=(7 + 8) ·9; в) 39·3 + 74 - 53; г) 37 < 18; д) 3х + 4< 71; е) 65 > 344 + 148:74 Проверьте, истинны ли числовые равенства: 13 · 93 = 31·39, 14·82 = 41·28, 23·64 = 32·46. Можно ли утверждать, что произведение любых двух натуральных чисел не изменится, если в каждом множителе переставить цифры? Известно, что х > у - истинное неравенство. Будут ли истинными следующие неравенства:
а) 2х> 2у; в) 2х- 7 < 2у- 7;
б) < -3 ;г) - 2х - 7 < - 2у- 7? Известно, что а< b — истинное неравенство. Поставьте вместо * знак «>» или «<» так, чтобы получилось истинное неравенство:
а) -3,7а* -3,7b; б) -* -; в) 0,12а* 0,12b;
г) -2(а + 5) * -2(b + 5); д); е)
Выполните задания, которые предназначаются ученикам начальных классов, и сделайте вывод о том, как трактуются в начальном курсе математики понятия числового равенства и числового неравенства:
а) Запиши два верных равенства и два верных неравенства, используя выражения: 9 ·3, 30 - 6, 3·9, 30 - 3.
б) Расставь скобки так, чтобы равенства были верными: 4 + 2 ·3 = 18; 31- 10 – 3 = 24; 54 – 12 + 8 = 34.
в) Поставь вместо * знаки действий так, чтобы получились верные равенства: 3 * 6 * 2 = 9; 9 * 3 * 6 = 18. Установите, какие из следующих записей являются уравнениями с одной переменной:
а) (х- 3)·5 = 12х; г) 3 + (12 - 7) ·5 = 16;
б) (х- 3)·5 = 12;д) (х - 3)·у= 12х;
в) (х- 3) - 17 + 12;е) х2 - 2х+ 5 = 0. Уравнение 2х4+ 4х2- 6 = 0 задано на множестве натуральных чисел. Объясните, почему число 1 является корнем этого уравнения, а 2 и -1 не являются его корнями. В уравнении (х+ ..)(2х+ 5) - (х- 3)(2х+ 1) = 20 одно число стерто и заменено точками. Найдите стертое число, если известно, что корнем это
1)целыми называются все натуральные числа (1,2,3, ..), 0 и противоположные натуральным 3)Да, верно так как числа целые такие как: 2 3 -3 -4 могут быть как отрицательными так и положительными 2.1) Два целых числа называются равными, если их записи совпадают вплоть до знаков, или если это целые числа 0 и −0 (−0 это есть не что иное, как 0). В противном случае целые числа называются неравными. 3) Если оба числа отрицательные, то их сумма будет отрицательной. пример: -7+(-5)=-7-5=-12 Если одно число отрицательное, а другое положительное, то по модулю надо смотреть. Примеры: -7+5=-2 -7+7=0 -7+10=3 4) Целое число, из которого проводится вычитание, будем называть уменьшаемым. Целое число, которое вычитаем, будем называть вычитаемым. Результат вычитания будем называть разностью. 6) плюс на плюс равно плюс плюс на минус равно минус минус на минус равно плюс