М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Milena200516
Milena200516
01.09.2021 06:36 •  Математика

1) 787 * x - 7.286 = 20.259 2) 24.000 : (x - 12)= 80

👇
Ответ:
Ответит7275
Ответит7275
01.09.2021
787*х-7286=20259
787*х=20259+7286
787*х=27545
х=27545:787
х=35

787*35-7286=20259
4,4(66 оценок)
Ответ:
fgtfbn1347837
fgtfbn1347837
01.09.2021
1)787*x-7.286=20.259
787*x=20.259+7.286
787*x=27.545
x=27.545/787
x=35
2)24.000/(x-12)=80
24.000=80*(x-12)
24.000=80*x-960
80*x=24.000+960
80*x=24.960
x=24.960/80
x=312
4,7(83 оценок)
Открыть все ответы
Ответ:
You1236
You1236
01.09.2021

а) 1) 26×5 = 130 (Б.) - продали во 2 день

2) 26+130 = 156 (б.) - продали в третий день

3) 26 + 130 + 156 = 312 (б.) продали за три дня

ответ : 312 билетов

Б) В магазин привозили овощи в течении пяти дней. Каждый день привозили одинаковое количество овощей. Сколько всего стало овощей, если каждый день привозили по 26 штук, но в последний день купили ещё 26 овощей?

Решение: 26×5- 26 = 104 (ов.) стало

ответ : 104 овоща.

Ещё одна задача :

На фабрику привезли 5 рулонов ткани по 26 метров в каждом. На пальто ушло 26 метров. Сколько метров осталось ткани?

4,5(5 оценок)
Ответ:
AwesomeLeva
AwesomeLeva
01.09.2021

Я докажу первое и последнее, остальное - сам.

1)

Доказательство "⇒".

Пусть у нас дано ((A∪B)⊂C), докажем тогда, что

1.1) A⊂C,

и

1.2) B⊂C.

1.1) x∈A⊂A∪B, ⇒ x∈A∪B⊂С, ⇒ x∈C. То есть A⊂C.

1.2) x∈B⊂A∪B, ⇒ x∈A∪B⊂C, ⇒ x∈C. То есть B⊂C.

чтд.

Доказательство "<=".

Пусть у нас дано: A⊂C и B⊂C. Докажем тогда, что

A∪B⊂C.

Пусть x∈A∪B, ⇔ x∈A или x∈B.

a) x∈A⊂C, ⇒ x∈C.

б) x∈B⊂C, ⇒ x∈C.

То есть A∪B⊂C.

чтд.

4)

Доказательство "⇒".

Пусть у нас дано (A⊂(B∪C)). Докажем тогда, что

((A\cap B^c)\subset C

Пусть x\in A\cap B^c, ⇔ x\in A и x\in B^c, ⇔

x\in A и x\notin B

Тогда т.к. A⊂B∪C, имеем

x\in B\cup C и x\notin B

((x\in B)\vee (x\in C))\wedge (x\notin B)

Первый случай. Если x∈B и x∉B, то x∈∅⊂C ⇒ x∈C.

Второй случай. Если x∈C и x∉B, то x∈C\B⊂C, ⇒ x∈C.

чтд.

Доказательство "<=".

Пусть у нас дано A\cap B^c \subset C, докажем тогда, что

A⊂ B∪C.

Пусть x∈A. Тут возможны два варианта x∈B, либо x∉B.

Случай первый: x∈A и x∈B, ⇒ x∈A∩B⊂B, ⇒ x∈B⊂B∪C, ⇒ x∈B∪C.

Случай второй: x∈A и x∉B, ⇒ x\in A и x\in B^c, ⇒

x\in A\cap B^c \subset C, ⇒ x∈C⊂B∪C, ⇒ x∈B∪C.

чтд.

4,8(30 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ