1. Найдем производную функции у(х) y' = 4x - 4x^3; 2. Найдем значения х, при которых у'(х) = 0. Решим уравнение. 4х - 4х^3 = 0; 4х(1 - х^2) = 0; 4х(1 - х)(1 + х) = 0; Уравнение имеет 3 корня х = 0, х = 1, х = -1; 3. Функция у(х) имеет 3 точки экстремума: х = 0, х = 1, х = -1. Определим, какие из этих точек являются точками максимума, а какие точками минимума. Для этого найдем вторую производную функции у(х). у'' = 4 - 12x^2 = 4(1-3x^2); у''(0) = 4 * 1 = 4 > 0; х = 0 - точка минимума. y''(1) = y''(-1) = -8 < 0; х = 1 и х = -1 - точки максимума. ответ. 3 точки экстремума. Одна точка максимума х = 0; две точки минимума х = -1 и х = 1.
Пошаговое объяснение:
радиус окружности, вписанной в трапецию, равен половине высоты этой трапеции. (диаметр окружности d равен высоте трапеции)
Если в трапецию вписана окружность, значит сумма противоположных сторон этой трапеции равна.
То есть ВС+AD=AB+CD
1+6=AB+4 ⇒ AB=3
проведем две высоты: ВН и CL
BCLH - прямоугольник, значит BC=HL=1
Если AD=6, то AH+LD=AD-HL=6-1=5
Пусть AH=x , тогда LD=5-x
ВН = CL=h -высоты
Рассмотрим ΔABH и ΔCDL - они прямоугольные, значит для них действует теорема Пифагора
BH²=AB²-AH²
h²=3²-x²
CL²=CD²-LD²
h²=4²-(5-x)²
составляем систему:
левые части равны, значит приравниваем правые:
9-х²=16-(5-x)²
9-х²=16-25+10х-х²
10х=18
х=1,8
h²=9-x²=9-1.8²=5.76
h=√5.76=2.4
d=h=2.4
C=2πR=πd=2.4π≈2.4*3.14=7.536
ОТВЕТ: 2,4π см или ≈7.536 см