Филипп хочет узнать все книги с точностью до половины грамма. но его весы могут взвешивать только с точностью до 10 граммов. какое наименьшее количество экземпляров этой книги ему надо взять, чтобы получить нужную точность взвешивания?
Имеющаяся точность равномерно "распределяется" между k экземплярами книг, причем в результате необходимо получить точность 0.5 г. Значит: 0.5=10/k k=10/0.5=20 ответ: 20 экземпляров
Пусть расстояние между пунктами А и В равно S км, скорость первого (из А) х км/ч, второго - у км/ч. Первый полпути за (S/2)/x часов. За это время второй у=S*y/(2*x) км. Eму осталось пройти S-S*y/(2*x)=S*(2*x-y)/(2*x) км . S*(2*x-y)/(2*x)=24 (1). Второй полпути за (S/2)/у часов. За это время первый у)*х=S*х/(2*у) км Eму осталось пройти S-S*х/(2*у)=S*(2*у-х)/(2*у) км S*(2*у-х)/(2*у)=15 (2). Поделим почленно уравнение (1) на уравнение (2), получим (2*x-y)/(2*у-х)=1,6*х/у. Поделим числитель и знаменатель последнего уравнения на у, и обозначим х/у=a. (2*a-1)/(2-a)=1,6*a 2*a-1=3,2*a-1,6*a^2 1,6*a^2-1,2*a-1=0 8*a^2-6*a-5=0 a1=(3/8)+√(9/64+5/8)=5/4 a2=(3/8)-√9/64+5/8)=-1/2 не удов усл х/у=5/4 или у=0,8*х. Подставив это в уравнение (1) или (2) получим S=40 км. Когда первый полпути, второй км. Когда первый дойдет до пункта В, второму останется пройти до А 24-16=8 км.
0.5=10/k
k=10/0.5=20
ответ: 20 экземпляров