тагда раз там 3х,a не 3k будет такое уравнение
z=3x+2y
x = 1 + 2 + 3 + 6 + 7 - 8y=19-8y
z=x-x/7=(7x-x)/7=6x/7
(6*(19-8y)/7=3*(19-8y)+2y
(114-48y)/7=57-24y+2y
(114-48y)/7=57-22y
114-48y=7(57-22y)
114-48y=399-154y
-48y+154y=399-114
106y=285
y= 2 73/106
проверка:
6x/7=3x+2y
6x=7(3x+2y)
6x=21x+14y
6(19-8*2 73/106)=21(19-8*2 73/106)+14(2 73/106)
19-8*285/106=19-21 54/106=-2 54/106=-2 27/53
6*(-2 27/53)=-6*133/53=-798/53=-15 3/53
21*(-133/53)=-52 37/53
14*285/106=3990/106=37 68/106=37 34/53
-52 37/53+37 34/53=-15 3/53
-15 3/53=-15 3/53
40 км.
Пошаговое объяснение:
1) Обозначим весь маршрут как х км.
2) В первый день турист 1/8 всего маршрута, то есть х/8 км.
3) Во второй день он 2/7 остатка:
3.1) Остаток пути: (7х)/8
за второй день: 2/7 * ((7х)/8) = (2х)/8 = х/4 км.
4) Осталось пройти на 15 км больше, чем он : (х/4 +15) км
5) Вспоминаем, что весь маршрут равен х км, тогда имеем уравнение:
х/8 + х/4 + (х/4 +15) = х;
Переведём дроби в десятичные:
0,125х + 0,25х + 0,25х +15 = х;
0.625х + 15 = х
15 = х - 0.625х;
15 = 0,375х;
х = 15/0,375, -> x = 40 км.
Значит, весь путь туриста составлял 40 км.
не?