М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
aalina760
aalina760
06.01.2020 06:51 •  Математика

Всаду посадили ягодные кустарники крыжовника и 12 кустов малины в 4 раза больше чем крыжовника и 40 кустов смородины сколько всего кустов посадили

👇
Ответ:
gjkbyf1984
gjkbyf1984
06.01.2020
1) 12*4=48 кустов малины
2) 12+48+40=100 кустов всего
ответ: 100 кустов посадили.
4,6(6 оценок)
Открыть все ответы
Ответ:
tolstuhen
tolstuhen
06.01.2020

С первого взгляда может показаться, что вблизи перигея орбиты Луна, имеющая больший угловой диаметр, будет покрывать звезду на большее время. На самом деле, ситуация противоположна. Если пренебречь эффектами осевого вращения Земли и считать наблюдателя неподвижным, то продолжительность центрального покрытия звезды будет равна интервалу времени, за которое Луна в ходе своего орбитального движения преодолеет расстояние, равное собственному диаметру. Иными словами, продолжительность центрального покрытия обратно пропорциональна величине тангенциальной скорости Луны. А по II закону Кеплера (или по закону сохранения момента импульса) тангенциальная скорость обратно пропорциональна расстоянию от Земли до Луны. В итоге, продолжительность центрального покрытия звезды прямо пропорциональна расстоянию от Земли до Луны и будет больше, когда Луна находится в апогее, нежели когда она в перигее.

Отношение расстояний до Луны в апогее и перигее можно вычислить как отношение видимых диаметров Луны в перигее и апогее, оно составляет 1.136. Именно таким и будет отношение продолжительности центральных покрытий звезд Луной в апогее и перигее орбиты.

4,4(63 оценок)
Ответ:
Даньок8
Даньок8
06.01.2020
Попробуем найти "шаблоны" расстановок цифр, по которым потом можно будет восстановить любое число, подходящее под определение "хорошего". Затем, исходя из них, посчитаем и количество.

Пусть X = от 1 до 9; и Y = от 1 до 9. При этом X не = Y в один и тот же момент. (то есть одни не могут быть равны одному и тому же числу)

Самый простой вариант  - все числа повторяются ровно или более 2 раз.

Попытаемся внести новое число в шаблон.
Y - не подходит, так как Y должен повторяться ровно или более двух раз.

YYXXX - подходит. При этом YYYXX бессмысленно, так как охватывает тот же диапазон. Далее двигаться также бесполезно, ибо X не может быть только один, а равносилен .
А вот про то, что положения у Y среди X может быть разный, забывать не стоит. Так что стоит учесть все возможные его расстановки.

Тогда количество шаблонов можно будет вычислить как кол-во перестановок Y в X плюс шаблон .

Формулы комбинаторики не помню (2 к 5 тра-та-та) так что буду решать "на живую": с = (4+3+2+1) = 10 - кол-во перестановок
10+1 = 11 - с учетом шаблона .

Теперь о числах. По сути, их всего два. Так как меняются одни в шаблоне одновременно (меняется значение X, то меняются и все X в шаблоне). Так что можно рассматривать это как число XY, но не простое. Как я говорил выше, X не может = Y. И нулями числа быть не могут. Посчитаем количество подстановок цифр вместо X и Y.

L = 9*8 + 8 = 10*8 = 80 (для каждого из 9 X соответствует 8 значений Y (без совпадения), и остается ещё одно значение Y, рассматривая которое, мы приходим к выводу, что для него также есть 8 значений X)

И каждую из этих 80 комбинаций XY можно подставить в 11 шаблонов, что даст возможность воссоздать любое "хорошее" пятизначное число.

80*11 = 880 - ответ  
КАК-ТО так
4,5(83 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ