М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Tytiki
Tytiki
24.08.2021 02:42 •  Математика

Два автомобиля одновременно из городов а и б навстречу друг к другу со скоростью 80км/ч и 60км/ч. автомобиль с большей скоростью доехал до б за 3 часа после встречи с автомобилей с меньшей скоростью в городе с . найдите расстоянии между а и б ? а)550км б)580км в)590км г)570км д)560км

👇
Ответ:
Guguguguguguguguy
Guguguguguguguguy
24.08.2021
550 ,,
4,6(57 оценок)
Открыть все ответы
Ответ:
valeevinsaf
valeevinsaf
24.08.2021
Задача 1.  

Решить можно так:

1). \dfrac{1}{A} (часть задания) - выполняет первая бригада за 1 день.

2). \dfrac{1}{B} (часть задания) - выполняет вторая бригада за 1 день.

3). \displaystyle \frac{1}{A} + \frac{1}{B} = \frac{A+B}{AB} (часть задания) - выполняют две бригады вместе за день.

4). 1 : \dfrac{A+B}{AB} = \dfrac{AB}{A+B} (дней) - выполнят задание обе бригады, если будут работать вместе.

ответ: за \dfrac{AB}{A+B} дней.

Задача 2.

Решается очень похоже (только наименования другие):

1). \dfrac{1}{A} (часть расстояния) - проезжает первый велосипедист за минуту.

2). \dfrac{1}{B} (часть расстояния) - проезжает второй велосипедист за минуту.

3). \displaystyle \frac{1}{A} + \frac{1}{B} = \frac{A+B}{AB} (часть расстояния) - проезжают оба велосипедиста вместе за минуту.

4). 1 : \dfrac{A+B}{AB} = \dfrac{AB}{A+B} (минут) - встретятся оба велосипедиста, считая от момента начала движения.

ответ: через \dfrac{AB}{A+B} минут.

4,7(18 оценок)
Ответ:
ayato0haruka
ayato0haruka
24.08.2021
Задача 1.  

Решить можно так:

1). \dfrac{1}{A} (часть задания) - выполняет первая бригада за 1 день.

2). \dfrac{1}{B} (часть задания) - выполняет вторая бригада за 1 день.

3). \displaystyle \frac{1}{A} + \frac{1}{B} = \frac{A+B}{AB} (часть задания) - выполняют две бригады вместе за день.

4). 1 : \dfrac{A+B}{AB} = \dfrac{AB}{A+B} (дней) - выполнят задание обе бригады, если будут работать вместе.

ответ: за \dfrac{AB}{A+B} дней.

Задача 2.

Решается очень похоже (только наименования другие):

1). \dfrac{1}{A} (часть расстояния) - проезжает первый велосипедист за минуту.

2). \dfrac{1}{B} (часть расстояния) - проезжает второй велосипедист за минуту.

3). \displaystyle \frac{1}{A} + \frac{1}{B} = \frac{A+B}{AB} (часть расстояния) - проезжают оба велосипедиста вместе за минуту.

4). 1 : \dfrac{A+B}{AB} = \dfrac{AB}{A+B} (минут) - встретятся оба велосипедиста, считая от момента начала движения.

ответ: через \dfrac{AB}{A+B} минут.

4,4(13 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ