М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maximb164mjqj
maximb164mjqj
01.01.2021 21:44 •  Математика

Как решать на движение в противоположную сторону из разных местоположений

👇
Ответ:
Damir2342
Damir2342
01.01.2021
1)сложить обе скорости 
2) расстояние разделить на сумму скоростей
4,4(36 оценок)
Ответ:
ayzilyamannano
ayzilyamannano
01.01.2021
Пример:
из 2х посёлков расстояние между которыми 2 км. выехали 2 велосипедиста и поехали в противоположные стороны. У 1 велосипедиста скорость была 10 км/ч ,а у 2-11 км/ч. Вопрос какое расстояние будет между ними через 2 часа?
1)10*2=20(км)-за 2 часа проехал первый велосипедист
2)11*2=22(км)-за 2 часа проехал второй велосипедист
3)20+22+2=44(км)-расстояние через 2 часа

Понял или нет?
4,4(82 оценок)
Открыть все ответы
Ответ:
alenasher1try
alenasher1try
01.01.2021

Задание № 1:

Сколько различных трёхзначных чисел, меньших 500, можно составить из чётных цифр? Цифры в записи числа не должны повторяться.

первое место - две цифры (24)

второе место - четыре цифры (02468 но без использованной на предыдущем шаге)

третье место - три цифры (02468 но без использованных на предыдущих шагах)

2*4*3=24

ответ: 24

 

Задание № 2:

Разность двух чисел равна 1431. Одно из чисел оканчивается нулём. Если этот нуль зачеркнуть, то получится второе число. Найдите сумму этих двух чисел.

второе число х

первое число 10х

10х-х=1431

9х=1431

х=1431/9

х=159

10х=1590

1590+159=1749

ответ: 1749

 

Задание № 3:

В четырёх корзинах лежат яблоки. В каждой из них разное число яблок, не менее одного и не более девяти. В первой в два раза меньше, чем во второй. Во второй и третьей вместе 17 яблок, а в третьей и четвёртой вместе 16 яблок. Сколько всего яблок в этих корзинах?

третья и четвертая 8+8 - быть не может (равные значения)

третья и четвертая 7+9 - может быть

третья и четвертая 6+10 - быть не может (значение больше 9)

если в третьей 7, то во второй 17-7=10 - не может быть (значение больше 9)

значит в третьей 9, тогда во второй 17-9=8, в первой 8/2=4

4+8+9+7=28

ответ: 28

 

Задание № 4:

У Маши было 120 рублей монетами достоинством 1 рубль, 2 рубля, 5 рублей и 10 рублей. Пятирублёвых монет было в 5 раз меньше, чем двухрублёвых, десятирублёвых и пятирублёвых поровну, а рублёвых монет было в 5 раз больше, чем всех остальных вместе. Сколько всего монет было у Маши?

5р = х

2р = 5х

10р = х

2р+5р+10р = 7х

1р = 35х

всего = 42х1

пономинальная сумма:

5*х+2*5х+10*х+1*35х=120

5х+10х+10х+35х=120

60х=120

х=2

42*2=84

ответ: 84

 

Задание № 5:

Из посёлка в город идёт автобус, и каждые 5 минут он встречает автобус, который идёт с такой же скоростью из города в посёлок. Сколько автобусов в час приходит из города в посёлок?

так как скорости равны, то если один автобус остановится, то интервал между двумя встречными увеличится в 2 раза, то есть составит 10 минут. это и есть интервал между рейсами

количество автобусов 60мин/10мин=6

ответ: 6

 

Задание № 6:

Окрашенный куб с ребром 10 см распилили на кубики с ребром 2 см. Сколько будет кубиков с ровно двумя окрашенными гранями?

в каждой грани образовался квадрат 5*5. с каждого ребра возьмем по три центральных реберных элемента (у угловых закрашено по 3 грани). ребер у кубика 12, значит возьмем 12*3=36

ответ: 36

 

Задание № 7:

Найдите значение дробного выражения:

А*П*Р*Е*Л*Ь/((М*А*Р*Т)*И*(М*А*Й)).

Одинаковые буквы - это одинаковые цифры, разные буквы - разные цифры.

используемые буквы А, П, Р, Е, Л, Ь, М, Т, И, Й - 10 штук. значит участвуют все цифры. какая-то из них 0. так как выражение определено, то ноль обязательно в числителе. 0 разделим на что-то получим 0

ответ: 0

4,4(16 оценок)
Ответ:

Даны координаты вершин пирамиды АВСD :

А(-5;-1;8), В(2;3;1), С(4;1;-2), D(6;3;7).

Найти: 1. Длину | вектор |АВ| = √((2-(-5))² + (3-(-1))² + (1-8)²) =

            √(49 + 16 + 49) = √114 ≈ 10,67708.  

2. Величину угла  между векторами АВ и АС.

Вектор АВ = (7; 4; -7) определён в п. 1. Модуль = √114 ≈ 10,67708.

Вектор АС = (9; 2; -10), √(81+4+100) = √185 ≈ 13,60147.

cos(AB_AC) = (7*9+4*2+(-7)*(-10))/(√114*√185) = 141/√21090 =  

             = 141/145,223965 ≈ 0,970914133 .

Угол равен arc cos (141/√21090) = 0,241777  радиан или 13,85278  градуса.

3. Площадь грани АСD,

Находим векторы АС и АD.

Вектор АC = (9; 2; -10) определён в п. 1. Модуль = √185 ≈ 13,60147.

Вектор АD = (11; 4; -1), √(121+16+1) = √138 ≈ 11,74734.

Площадь грани ACD равна половине модуля векторного произведения: S = (1/2)|AC*AD|.

 i        j       k|       i        j

9      2    -10|      9      2

11      4      -1|     11      4   =   -2i - 110j + 36k + 9j + 40i - 22k =

                                        =   38i - 101j + 14k = (38; -101; 14).

Модуль равен √(38² + (-101)² + 14²) = √11841  ≈ 108,8163591 .

Площадь S = (1/2)*√11841  = 54,40817953 .

4. Объем АВСD(объем пирамиды ).

Объём пирамиды V = (1/6)*|(ABxAC)*AD|.

Вектор АВ = (7; 4; -7) определён в п. 1. Модуль = √114 ≈ 10,67708.

Вектор АС = (9; 2; -10), √(81+4+100) = √185 ≈ 13,60147. (см. п. 2).

i        j       k|       i        j

7      4      -7|       7      4

9      2     -10|     9      2   =   -40i - 63j + 14k + 70j +1 4i - 36k =

                                        =   -26i + 7j - 22k = (-26; 7; -22).

Модуль равен √((-26)² + 7² + (-22)²) = √1209  ≈ 34,7706773 .

5. Уравнение стороны ВС. Вектор ВС = (2; -2; -3).

(x - 2)/2 = (y - 3)/(-2) = (z - 1)/(-3).

6. Уравнение грани АВD по точкам А(-5;-1;8), В(2;3;1), D(6;3;7).

Для составления уравнения плоскости используем формулу:

x - xA          y - yA         z - zA

xB - xA         yB - yA         zB - zA

xC - xA         yC - yA          zC - zA

 = 0

Подставим данные и упростим выражение:

x - (-5)       y - (-1)              z - 8

2 - (-5)       3 - (-1)      1 - 8

6 - (-5)       3 - (-1)       7 - 8

 = 0

x - (-5) y - (-1) z - 8

7 4 -7

11 4 -1

 = 0

x - (-5)  4·(-1)-(-7)·4  -  y - (-1)  7·(-1)-(-7)·11  +  z - 8  7·4-4·11  = 0

24 x - (-5)  + (-70) y - (-1)  + (-16) z - 8  = 0

24x - 70y - 16z + 178 = 0  или, сократив на 2

12x - 35y - 8z + 89 = 0 .

7.Уравнение высоты СН к грани АВD .

Нормальный вектор плоскости АВД принимаем из её уравнения:

АВД = (12; -35; -8).

Тогда уравнение высоты СН:

(x - 4)/12 = (y - 1)/(-35) = (z + 2)/(-8).

4,7(86 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ