1. Разделить 90
Всего частей
8+2+5 = 15 частей
Размер одной части
90 : 15 = 6 - одна часть
Находим части числа 90:
6*8=48, 6*2=12, 6*5=30 - части числа - ОТВЕТ
Наибольшая часть: 48 - ОТВЕТ
2. Пропорция про трубы.
24 мин * 6 шт = Х мин * 9 шт - работа - ОБРАТНАЯ пропорциональность
Х = 24*6:9 = 144 : 9 = 16 мин - время наполнения - ОТВЕТ
3. Нет описания фигуры.
4. Нет результатов измерений карты.
М 1: 30 000 000 - (неименованный) масштаб - дано
В 1 см - 30 000 000 см = 300 000 м = 300 км
k = 300 км/см - именованный масштаб.
В 1 мм - 30 км. Измеряем с точностью до миллиметров и умножаем.
3. Периодические дроби
0,(7) = 7/9 0,(1) = 1/9
2,4(3) = 2 13/30
Правило перевода дробей на рисунке в приложении.
4. Мотоциклист догоняет.
Vc = S/Tc = 23,4 : 32 = 117/160 = 0,73125 - скорость сближения - погони.
V2 = V1 + Vc = 13.5 + 0.73125 = 14.23125 - скорость мотоциклиста - ОТВЕТ
ИСПРАВЛЯЕМ - НАВЕРНО не 32 часа, а 32 минуты
Переводим минуты в часы:
Tc = 32 мин = 32/60 ч = 8/15 ч - время сближения.
Vc =S/Tc = 23 2/5 : 8/15 = 43 7/8 км/ч = скорость сближения
Vm = 13 1/2 + 43 7/8 = 59 3/8 = 59,375 км/ч - скорость мотоцикла - ОТВЕТ
Пошаговое объяснение:
Вспомним такую известную нам операцию как сложение нескольких одинаковых слагаемых. Например, 5 + 5 + 5. Такую запись математик заменит более короткой:
5 ∙ 3. Или 7 + 7 + 7 + 7 + 7 + 7 запишет как 7 ∙ 6
А писать а + а + а + …+ а (где n слагаемых а) – вообще не будет, а напишет а ∙ n. Точно так же математик не будет длинно писать произведение нескольких одинаковых множителей. Произведение 2 ∙ 2 ∙ 2 запишется как 23 (2 в третьей степени). А произведение 4 ∙ 4 ∙ 4 ∙ 4 ∙ 4 ∙ 4 как 46(4 в шестой степени). Но если необходимо, то можно короткую запись заменить более длинной. Например, 74 (7 в четвёртой степени) записать как 7∙7∙7∙7. Теперь дадим определение.
Под записью аn (где n – натуральное число) понимают произведение n множителей, каждый из которых равен а.
Саму запись аn называют степенью числа а, число а – основанием степени, число n – показателем степени.
Запись аn можно прочитать как «а в энной степени» или как «а в степени эн». Записи а2 (а во второй степени) можно прочитать как « а в квадрате», а запись а3 ( а в третьей степени) можно прочитать как «а в кубе». Ещё один особый случай – это степень с показателем 1. Здесь необходимо отметить следующее:
Степенью числа а с показателем 1 называют само это число. Т.е. а1 = а.
Любая степень числа 1 равна 1.
т.е. 1n = 1. Например, 15 = 1; 145 = 1.
Любая степень числа 0 равна 0. Т.е. 0n = 0. Например, 07 = 0; 021 = 0.
А теперь давайте рассмотрим несколько степеней с основанием 10.
103 = 1000
104 = 10000
106 = 1000000
Вы заметили, что степени десяти – это единица с таким количеством нулей, каков показатель степени?