a(a + 5b) - (a + b)(a - b)=a^2+5ab-a^2+b^2=5ab+b^2
b(3a-b) - (a - b)(a + b)=3ab-b^2-a^2+b^2=3ab-a^2
(y+10)(y-2)-4y(2 - 3y)=y^2+8y-20-8y+12y^2=13y^2-20
(a-4)(a+9)-5a(1-2a)=a^2+5a-36-5a+10a^2=11a^2-36
(2b-3)(3b+2)-3b(2b+3)=6b^2-9b+4b-6-6b^2-9b=-14b-6
(3a-1)(2a-3)-2a(3a+5)=6a^2-2a-6a+4-6a^2-10a=-18a+4
(m+3)^2 -(m-2)(m+2)=m^2+6m+9-m^2+4=5m+13
(a-1)^ - (a+1)(a-2)=a^2-2a+1-a^2-a-2=-3a-1
(c+2)(c--1)^2=c^2-c-6-c^2+2c-1=c-7
(y-4)(y+-3)^=y^2-16-y^2+6y-9=6y-25
(a-2)(a++1)^ =a^2+2a-8-a^2-2a-1=-9
(b-4)(b+-1)^=b^2-2b-8-b^2+2b-1=-9
ответ:1) Пусть первый рабочий изготовил х (икс) деталей, тогда второй рабочий изготовил: (х · 5/6) деталей, третий рабочий: (х · 5/6 · 90/100) = (х · 3/4) деталей, а четвертый рабочий: (х · 3/4 – 8) деталей.
2) Зная общее количество изготовленных деталей, составим уравнение:
х + х · 5/6 + х · 3/4 + х · 3/4 – 8 = 152;
х + х · 5/6 + х · 3/4 + х · 3/4 = 152 + 8;
х · 12/12 + х · 10/12 + х · 9/12 + х · 9/12 = 160;
х · 40/12 = 160;
х · 10/3 = 160;
х = 160 : 10/3 = 160 · 3 : 10 = 48 (д.) – первый рабочий.
3) Найдем детали второго рабочего: х · 5/6 = 48 · 5/6 = 48 : 6 · 5 = 40 (д.).
4) Узнаем количество деталей третьего рабочего: х · 3/4 = 48 : 4 · 3 = 36 (д.).
5) Определим детали четвертого рабочего: х · 3/4 – 8 = 36 – 8 = 28 (д.).
ответ: первый рабочий изготовил 48 деталей, второй – 40 деталей, третий – 36 деталей, а четвертый – 28 деталей.
Пошаговое объяснение: