площадь круга описывающий правильный шестиугольник равна S=πR²,
площадь вписанного круга равна s=πr².
R- описанной окружности равен стороне вписанного шестиугольника: R=a, чтобы вычислить радиус вписанной окружности, соедините две смежные вершины шестиугольника с центром окружности. Получили равносторонний треугольник , в котором высота, опущенная из вершины, являющейся центром окружностей, на сторону шестиугольника является радиусом вписанной окружности.Вычислим этот радиус.
r²=a²-(a/2)²= a²-a²/4=a²·3/4=( a√3)/2 или r=a·sin60=(a·√3)/2
площадь кольца равна разности площади круга описанной окружности и площади круга вписанной окружности: πa²-π·((a√3)/2)²= πa²-π·3a²/4=π(a²-3a²/4)=πa²/4
ответ:πa²/4
Подробнее - на -
Пошаговое объяснение:
Решаем силой Разума - сначала думаем.
Мысль 1 - какие бывают масштабы? - на рисунке в приложении карта случайной местности. Три вида:численный, именованный, линейный.
Мысль 2 - как легче вычислять - делить или умножать.
Дано: М = 1:200 - численный масштаб,
N₁ = 7 м - реальный отрезок, N₂ = 5.2 м - реальный радиус.
Найти: L₁=? L₂=? Изобразить в масштабе.
Мысль 3 - вычислим через численный масштаб и умножаем.
1) L₁ = N₁ * M = 7(м)* (1/200) = 7/200 =0,035 (м) = 3,5 см = 35 мм. - длина отрезка - ответ.
Мысль 4 - вычислим через именованный масштаб, переведём в него и будем делить.
В 1 см = 200 см = 2 м или k = 2 м/см - именованный масштаб.
2) L₁ =N₁ : k = 7 (м) : 2 (м/см) = 3,5 см = 35 мм - длина отрезка - ответ - (гораздо проще оказалось).
Аналогично два варианта для задачи б) - радиус N₂ = 5,2 м.
3) L₂ = 5.2 (м) * 1/200 = 0,026 м = 2,6 см = 26 мм - радиус - ответ.
4) L₂ = 5.2 (м) : 2(м/см) = 2,6 см = 26 мм - радиус - ответ.
Мысль 5 - изображаем результаты на рисунке в приложении. Потребуется циркуль.
ДОПОЛНИТЕЛЬНО:
ИНТЕРЕСНА ОБРАТНАЯ ЗАДАЧА - как по карте или плану найти реальные размеры. Для этого можно использовать линейный нониус, который обычно есть на транспортире.
560+260-20d=1300-100d
80d=480
d=6
ответ:6