В решении.
Пошаговое объяснение:
Решение задач с систем линейных уравнений с 2-мя неизвестными
№1
Вычисли площадь прямоугольной спортивной площадки, если ее периметр равен 430 м, а длина площадки на 35 м больше её ширины.
х - длина площадки;
у - ширина площадки;
По условию задачи система уравнений:
х - у = 35
2(х + у) = 430
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 35 + у
2(35 + у + у) = 430
2(35 + 2у) = 430
70 + 4у = 430
4у = 430 - 70
4у = 360
у = 360/4 (деление)
у = 90 (м) - ширина площадки;
Теперь подставить значение у в любое из двух уравнений системы и вычислить х:
х = 35 + у
х = 35 + 90
х = 125 (м) - длина площадки;
Проверка:
2(125 + 90) = 2 * 215 = 430 (м), верно;
Площадь площадки:
125 * 90 = 11250 (м²).
35/12 *4=11 2/3 35/3:70/11=35/3*11/70=1 5/6
1 2/3+1 5/6=1 4/6+1 5/6=3 2/3