Пошаговое объяснение:
Эта задачка не на комбинаторику и теорию вероятности, а на метод от противного. Предположим что у нас на доске менее 3 шашек одного цвета, но тогда шашек другого цвета не менее чем 5-2=3,таким образом мы приходим к противоречию. Значит на доске осталось не менее трех шашек одного цвета. Или так:если положить,что на доске осталось не более двух шашек каждого цвета, то их сумма не больше чем 2+2=4<5,то есть мы приходим к противоречию.Этот будет работать и для большего числа шашек. Для 9 шашек, на доске останется не менее 5 шашек. Для 99 шашек не менее 50. То есть на доске не менее чем (n+1)/2 шашек для нечетного n, и n/2 для четного n одного цвета. n-число шашек,что осталось на доске.
23, 24, 25, 26, 27, 28, 29
34, 35, 36, 37, 38, 39
45, 46, 47, 48, 49
56, 57, 58, 59
67, 68, 69
78, 79
89
я думаю так. Если надо, чтобы цифры в числах не повторялись. А если, чтоб повторялись, то