М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
коаладоби
коаладоби
06.05.2021 17:40 •  Математика

Сдвух станций, расстояние между которыми равно 25,6 км, одновременно в одном направлении вышли два поезда. первый поезд шёл впереди со скоростью 58,4 км/ч, и через 4 ч после начала движения его догнал второй поезд. найдите скорость второго поезда

👇
Ответ:
sof2008
sof2008
06.05.2021
Сначала узнаем, сколько километров первый поезд до того момента, как его догнал второй. Скорость первого известна - 58,4 км/ч, время, которое он был в пути - 4 ч.
58,4*4=233,6 км

Второй поезд проехал расстояние между станциями - 25,6 км - и расстояние, которое проехал второй поезд - 233,6 км.
Найдем всё расстояние, которое второй поезд
25,6+233,6=259,2 км

Поезда выехали одновременно, значит второй поезд до того, как догнал первого, в пути был тоже 4 ч. За эти 4 ч. он проехал 259,2 км.
Найдем его скорость.
259,2:4=64,8 км/ч

ответ: скорость второго поезда 64,8 км/ч
4,5(27 оценок)
Открыть все ответы
Ответ:
Гавхарчик
Гавхарчик
06.05.2021

(2;1+\sqrt{2})\cup(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty)

Пошаговое объяснение:

ОДЗ логарифмов: x > 0, x ≠ 1, x > 2, x ≠ 3 ⇒ x > 2, x ≠ 3

Пусть \log_{x}{(x-2)}=t. Тогда \log_{x-2}{x}=\dfrac{1}{\log_{x}{(x-2)}}=\dfrac{1}{t}:

\dfrac{4t+\frac{1}{t}-4}{4t+\frac{2}{t}+6}\geq 0. Заметим, что t ≠ 0, так как это значение достигается только при x = 3 (x - 2 = x⁰ = 1 ⇔ x = 3). Но при x = 3 основание логарифма \log_{x-2}{x} равно 1, что не удовлетворяет ОДЗ. Значит, домножим обе части дроби на t:

\dfrac{4t^2-4t+1}{4t^2+6t+2}\geq 0|\cdot 2\\\dfrac{4t^2-4t+1}{2t^2+3t+1}\geq 0\\\dfrac{(2t-1)^2}{(t+1)(2t+1)}\geq 0

Решим методом интервалов:

 +      -    +     +

----o----o----*---->

   -1    -¹/₂   ¹/₂  

t\in(-\infty;-1)\cup(-\frac{1}{2};+\infty)

\displaystyle\left [ {{\log_{x}{(x-2)}-\frac{1}{2}}} \right.

Заметим, что по ОДЗ x > 2, то есть основание логарифма всегда больше 1. Значит, на ОДЗ неравенства равносильны:

\displaystyle \left [ {{x-2x^{-\frac{1}{2}}}} \right. \left [ {{x-2\frac{1}{\sqrt{x}}}} \right. \left [ {{x^2-2x-10}} \right.

Первое неравенство имеет решение (с учётом ОДЗ) x\in(2;1+\sqrt{2})

Второе неравенство раскладывается на множители:

(\sqrt{x}+1)(\sqrt{x}^2-\sqrt{x}-1)0|:(\sqrt{x}+1)0\\\sqrt{x}^2-\sqrt{x}-10

Нули получившегося неравенства: \displaystyle \left [ {{\sqrt{x}=\frac{1-\sqrt{5}}{2}

C учётом ОДЗ получаем, что в данном случае x\in(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty) (левая граница меньше правой, так как √5 < 3).

Объединим промежутки. Сравним правую границу первого неравенства и левую границу второго. Сравним эти числа относительно 2,5:

1+\sqrt{2}\vee 2{,}5\Leftrightarrow\sqrt{2}\vee1{,}5\Leftrightarrow 24\\1+\sqrt{2}

Тогда промежутки не пересекаются, итоговый ответ: x\in(2;1+\sqrt{2})\cup(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty)

4,5(34 оценок)
Ответ:
sxxaaa
sxxaaa
06.05.2021

-1

Пошаговое объяснение:

p(a) = a(10 - a) / (a - 5)

это означает, что если а = 0

p(0) = 0 (10 - 0) / (0 - 5) = 0

или если а = 1

p(1) = 1 (10 - 1) / (1 - 5) = -9/4 = -2.55

теперь, скажем, что а = 10 - а

p(10 - a) = (10 - a) (10 - (10 - a)) / (10 - a - 5) = (10 - a) * a / (5 - a) =  a * (10 - a) / (5 - a)

посмотрим, что означает p(0) / p(1) =  0 / -2.55

по аналогии p(a) / p(10 - a) = (a(10 - a) / (a - 5)) / ( a * (10 - a) / (5 - a))  =

(a * (10 - a) * (5 - a)) / ((a - 5) * (10 - a) * a) = (5 - a) / (a - 5) = -1

4,6(14 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ