№1 Смотри рисунок
Точка пересечения с осью абцисс : О(2;0)
Я единицы приблизительно раставлял, бери единичный отрезок по одной клеточке
№2
Раскрываем 1 модуль:
1)|x|-2=4, где |x|-2>=0
Раскрываем 2 модуль:
а) x-2=4, где x>=0
x=4+2=6
Проверяем:
|6|-2>=0
6>=0 - верно. Значит первый корень: x1=6
б) -x-2=4, где x<=0
-x=6
x=-6
|-6|-2>=0
-6<=0 - верно. Значит второй корень: x2=-6
2) |x|-2=-4, где |x|-2<=0
а)x-2=-4, где x>=0
x=-4+2=-2
-2>=0 - неверно.
б) -x-2=-4, где x<=0
-x=-2
x=2
2<=0 - неверно
Сл-но, уравнение имеет 2 корня
ответ: ±6
Я для тебя писан пояснения, их не нужно записывать
Первый рабочий может выполнить некоторую работу на 4 часа быстрее, чем второй. Вначале они 2 часа работали вместе, после чего оставшуюся работу один первый выполнил за 1 час. За какое время может выполнить всю работу 2 рабочий?
Примем всю работу за единицу.
Пусть первый рабочий выполняет всю работу за х часов.
Тогда второй - за х+4 часа.
За 1час первый выполняет 1/х часть работы, второй 1(\х+4) - это производительность каждого из них.
При совместной работе за 1 час они выполняют
1/х+1/(х+4)=(2х+4):(х²+4х) часть работы
за 2 часа было выполнено
2(2х+4):(х²+4х)
после чего осталось выполнить
1-2(2х+4):(х²+4х)=(х²-8):(х²-4х) часть работы
Эту работу первый рабочий выполнил за 1 ч
Время выполнения находят делением работы на производительность:
[(х²-8):(х²-4х)]:1/х=1
откуда получаем
х²-8=х-4
х²-х-4=0
Корни этого квадратного уравнения 4 и -3 (не подходит)
Первый рабочий может выполнить всю работу за 4 часа.
Второй рабочий может выполнить всю работу за 4=4=8 (часов)