Для решения данной задачи нам понадобятся некоторые свойства правильного треугольника.
1. Вписанная окружность:
Радиус вписанной окружности может быть найден по формуле r = a/(2√3), где a - сторона правильного треугольника.
Подставим данные в эту формулу:
r = 2√6/(2√3)
r = √6/√3
Чтобы упростить это выражение, можно домножить его на √3/√3:
r = (√6/√3) * (√3/√3)
r = √18/3
Извлекаем квадратный корень:
r = √(9*2)/3
r = 3√2/3
И сокращаем дробь:
r = √2
Таким образом, радиус вписанной окружности равен √2.
2. Описанная окружность:
Радиус описанной окружности может быть найден по формуле R = a/(2*sin(α)), где a - сторона правильного треугольника, α - угол между сторонами.
Угол между сторонами правильного треугольника равен 60 градусам (так как все углы в правильном треугольнике равны 60 градусам).
Подставим данные в формулу:
R = 2√6/(2*sin(60°))
R = √6/(sin(60°))
sin(60°) равен (√3)/2:
R = √6/((√3)/2)
Чтобы делать деление дробей, умножим числитель и знаменатель на 2:
R = (2√6)/(√3)
Умножим числитель и знаменатель на √3:
R = (2√6*√3)/3
R = (2√(6*3))/3
R = (2√18)/3
Извлекаем квадратный корень:
R = (2√(9*2))/3
R = (2√9*√2)/3
R = (2*3√2)/3
И сокращаем дробь:
R = 2√2/3
Таким образом, радиус описанной окружности равен 2√2/3.
Хорошо, давайте начнем с определения координатной прямой. Координатная прямая - это прямая линия, которая простирается бесконечно в обоих направлениях и используется для отображения чисел на числовой оси.
Уравнение координатной прямой ох может быть записано в виде y = 0. Здесь y обозначает значение функции (в данном случае значение по оси у), а 0 - это конкретное значение, которое она принимает на координатной прямой ох.
Обратите внимание, что у координатной прямой ох нет каких-либо переменных или выражений, которые связывают x и y. Она является прямой линией, на которой все значения y равны нулю.
Теперь давайте рассмотрим пошаговое решение для проверки, что данное уравнение соответствует координатной прямой ох.
Шаг 1: Поставим y = 0 в уравнение y = 0.
Теперь у нас есть 0 = 0.
Шаг 2: Очевидно, что данное уравнение выполняется, так как 0 действительно равно 0.
Таким образом, уравнением координатной прямой ох является y = 0.
Надеюсь, это решение ясно и понятно для вас. Если у вас возникнут еще вопросы, пожалуйста, не стесняйтесь задавать их.