Шаг 1 (базис индукции).
Пусть n=1. Тогда левая часть доказываемого равенства 1/(1*5)=1/5, правая часть 1/(4*1+1)=1/5, т.е. равенство справедливо.
Пусть 1/(1*5)+1/(5*9)+...+1/((4k-3)(4k+1))=k/(4k+1) при n=k.
Шаг 2 (индуктивный переход).
Пусть n=k+1. Тогда 1/(1*5)+1/(5*9)+...+1/((4k-3)(4k+1))+1/((4(k+1)-3)(4(k+1)+1))=
=k/(4k+1)+1/((4(k+1)-3)(4(k+1)+1))=k/(4k+1)+1/((4k+4-3)(4k+4+1))=
=k/(4k+1)+1/((4k+1)(4k+5))=(k(4k+5)+1)/((4k+1)(4k+5))=(4k^2+5k+1)/((4k+1)(4k+5))=
=(4k^2+k+4k+1)/((4k+1)(4k+5))=(k(4k+1)+4k+1)/((4k+1)(4k+5))=
=((4k+1)(k+1))/((4k+1)(4k+4+1))=(k+1)/(4(k+1)+1)
Следовательно, исходное предположение справедливо при любых натуральных n.
пусть АВСД -ромб,АС-диагональ ,которая делит угол АВД и угол ВСД на равные углы, тоесть угол ВАС=углу САД , угол ВСА=углу АСД . По условию задачи диагональ АС равна стороне ромба например СД . Так же диагональ делит ромб на два треугольника АВС и АСД . Рассмотрим треугольник АСД .АС=СД . Значит треугольник АСД - равносторонний. АД -основа. Согласно свойствам равностороннего треугольника его углы у основы равны , тоесть угол САД равен углу АДС .Поскольку
стороны АВ и СД -паралельные , а диагональ АС пересекает их , то углы ВАС и АСД являются внутренными разносторонними . По условиям теоремы они равны .Согласно решению угол ВАС=САД=АСД . Значит у треугольника АСД все углы равны .Поскольку сумма углов треугольника 180 градусов ,то углы будут равны 60 градусов .АС является общей стороной ,СД параллельна и равна АВ , угол ВАС=АСВ=АВС=60 градусов .Значит угол ВАД =ВСД=120 градусов ,угол АВС=АДС=60 градусов.
675:9=75 км в час скорость автомобиля
450:75=6 часов в первый день
225:75=3 часа во второй день