Общим делителем нескольких чисел называется число, которое является делите-лем каждого из них. Например, числа 36, 60, 42 имеют общие делители 2, 3 и 6. Среди всех общих делителей всегда есть наибольший, в данном случае это 6. Это и есть наибольший общий делитель (НОД).
Чтобы найти наибольший общий делитель (НОД) нескольких чисел надо:
1) представить каждое число как произведение его простых множителей, например:
360 = 2 · 2 · 2 · 3 · 3 · 5 ,
2) записать степени всех простых множителей:
360 = 2 · 2 · 2 · 3 · 3 · 5 = 23 · 32 · 51,
3) выписать все общие делители (множители) этих чисел;
4) выбрать наименьшую степень каждого из них, встретившуюся во всех произведениях;
5) перемножить эти степени. П р и м е р . Найти НОД чисел: 168, 180 и 3024.
Р е ш е н и е . 168 = 2 · 2 · 2 · 3 · 7 = 23 · 31 · 71 ,
Общим кратным нескольких чисел называется число, которое делится на каждое из этих чисел. Например, числа 9, 18 и 45 имеют общее кратное 180. Но 90 и 360 – тоже их общие кратные. Среди всех общих кратных всегда есть наименьшее, в данном случае это 90. Это число называется наименьшим общим кратным (НОК).
Чтобы найти наименьшее общее кратное (НОК) нескольких чисел надо:
1) представить каждое число как произведение его простых множителей, например:
504 = 2 · 2 · 2 · 3 · 3 · 7 ,
2) записать степени всех простых множителей:
504 = 2 · 2 · 2 · 3 · 3 · 7 = 23 · 32 · 71,
3) выписать все простые делители (множители) каждого из этих чисел;
4) выбрать наибольшую степень каждого из них, встретившуюся во всех разложениях этих чисел;
5) перемножить эти степени. П р и м е р . Найти НОК чисел: 168, 180 и 3024.
Р е ш е н и е . 168 = 2 · 2 · 2 · 3 · 7 = 23 · 31 · 71 ,
Общим делителем нескольких чисел называется число, которое является делите-лем каждого из них. Например, числа 36, 60, 42 имеют общие делители 2, 3 и 6. Среди всех общих делителей всегда есть наибольший, в данном случае это 6. Это и есть наибольший общий делитель (НОД).
Чтобы найти наибольший общий делитель (НОД) нескольких чисел надо:
1) представить каждое число как произведение его простых множителей, например:
360 = 2 · 2 · 2 · 3 · 3 · 5 ,
2) записать степени всех простых множителей:
360 = 2 · 2 · 2 · 3 · 3 · 5 = 23 · 32 · 51,
3) выписать все общие делители (множители) этих чисел;
4) выбрать наименьшую степень каждого из них, встретившуюся во всех произведениях;
5) перемножить эти степени. П р и м е р . Найти НОД чисел: 168, 180 и 3024.
Р е ш е н и е . 168 = 2 · 2 · 2 · 3 · 7 = 23 · 31 · 71 ,
Общим кратным нескольких чисел называется число, которое делится на каждое из этих чисел. Например, числа 9, 18 и 45 имеют общее кратное 180. Но 90 и 360 – тоже их общие кратные. Среди всех общих кратных всегда есть наименьшее, в данном случае это 90. Это число называется наименьшим общим кратным (НОК).
Чтобы найти наименьшее общее кратное (НОК) нескольких чисел надо:
1) представить каждое число как произведение его простых множителей, например:
504 = 2 · 2 · 2 · 3 · 3 · 7 ,
2) записать степени всех простых множителей:
504 = 2 · 2 · 2 · 3 · 3 · 7 = 23 · 32 · 71,
3) выписать все простые делители (множители) каждого из этих чисел;
4) выбрать наибольшую степень каждого из них, встретившуюся во всех разложениях этих чисел;
5) перемножить эти степени. П р и м е р . Найти НОК чисел: 168, 180 и 3024.
Р е ш е н и е . 168 = 2 · 2 · 2 · 3 · 7 = 23 · 31 · 71 ,
1) 3 - 1 4/15 = 2 15/15 - 1 4/15 = 1 11/15,
2) 1 11/15 : 4/25 = 26/15 * 25/4 = 65/6 = 10 5/6,
3) 11 - 10 5/6 = 10 6/6 - 10 5/6 = 1/6,
4) 1/6 + 8/15 = 5/30 + 16/30 = 21/30 = 7/10