Формулировка: все точки, принадлежащие срединному перпендикуляру, равноудалены от концов отрезка. Доказательство. Обозначим отрезок как АВ, середина отрезка - К. Выберем произвольную точку С на перпендикуляре, проведенном к середине отрезка АВ. Получили треугольник АВС. Докажем, что он равнобедренный, т.е. АС и ВС равны. Рассмотрим треугольники АСК и ВСК. Докажем, что они равны. Они равны по признаку равенства треугольников - по двум сторонам и углу между ними, поскольку АК и ВК равны по условию, СК - общая сторона, углы АКС и ВКС равны как прямые углы - по условию (СК - перпендикуляр). Следовательно АС=ВС.
Строим график, фигура на картинке.Синим цветом x=(y-2)y, розовым y=-x По определению площадь считается двойным интегралом по dxdy, остаётся определиться с границами интегрирования. Смотрим на картинку и считаем: Как выбрали пределы интегрирования? Глядим на рисунок. В заданной фигуре x меняется от -1 до 0, переменная y меняется от параболической функции до прямой. Прямая y=-x, а в параболе выражаем y через x, получаем нижний предел интегрирования. Остаётся взять интеграл: По dy берётся без трудностей, по dx распадается на три табличных интеграла