М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
EvaCat777
EvaCat777
15.12.2021 18:53 •  Математика

Найдите объем воды которой можно полностью заполнить бассейн длиной 15 м, шириной 3м и высотой 2 м ответ выразить в литрах 1 м3 = 1000л

👇
Ответ:
chery97
chery97
15.12.2021
V=15*3*2=90м³- объём бассейна
90*1000=90000л - объём воды в бассейне
ответ  90000л
4,8(78 оценок)
Открыть все ответы
Ответ:
эльвинчик2
эльвинчик2
15.12.2021

1) 2√10 см; 2√15 см

2) ∠АОВ=2·∠ACB или 2·arcsin√\frac{2}{5}

∠АОС=2·∠AВС или 2·arcsin√\frac{3}{5} .

Пошаговое объяснение:

1) Высота, опущенная из вершины прямого угла делит прямоугольник на 2 подобных ему прямоугольника. Это следует из первого признака подобия (равенство двух углов)

Рассмотрим рисунок. Имеем исходный прямоугольный ΔАВС и подобные ему ΔКАС и ΔКВА.

Примем высоту АК за х. Тогда из подобия треугольников получим:

х/4=6/х ⇒ х²=24 ⇒ х=√24.

Из прямоугольных ΔКАС и ΔКВА найдем катеты ΔАВС.

АВ=√(ВК²+АК²)=√(16+24)=2√10 см

АС=√(КС²+АК²)=√(36+24)=2√15 см

2) Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Пусть т. О - середина гипотенузы  ΔАВС. Тогда получаем два равнобедренных  ΔАВО  и ΔАСО с основаниями АВ и АС соответственно.

Из свойств сегментов окружностей известно, что угол сегмента окружности равен 2·arcsin( с/2R), где с-длина хорды, R-радиус окружности.

Тогда  ∠АОВ=2·arcsin( AB/BC) ⇒   ∠АОВ=2·arcsin( sin∠ACB)=2·∠ACB.

Соответственно:

∠АОС=2·arcsin( AС/BC) ⇒   ∠АОС=2·arcsin( sin∠AВС)=2·∠AВС.

Если нужен цифровой ответ, то

∠АОВ=2·∠ACB=2·arcsin( АВ/ВС)= 2·arcsin(2√10/10)=2·arcsin√\frac{2}{5}

∠АОС=2·arcsin( AС/BC)= 2·arcsin(2√15/10)=2·arcsin√\frac{3}{5}


Впрямоугольном треугольнике высота, опущенная из прямого угла делит гипотенузу н отрезки 4 см и 6 см
Впрямоугольном треугольнике высота, опущенная из прямого угла делит гипотенузу н отрезки 4 см и 6 см
4,7(88 оценок)
Ответ:
F777FF
F777FF
15.12.2021

1) 2√10 см; 2√15 см

2) ∠АОВ=2·∠ACB или 2·arcsin√\frac{2}{5}

∠АОС=2·∠AВС или 2·arcsin√\frac{3}{5} .

Пошаговое объяснение:

1) Высота, опущенная из вершины прямого угла делит прямоугольник на 2 подобных ему прямоугольника. Это следует из первого признака подобия (равенство двух углов)

Рассмотрим рисунок. Имеем исходный прямоугольный ΔАВС и подобные ему ΔКАС и ΔКВА.

Примем высоту АК за х. Тогда из подобия треугольников получим:

х/4=6/х ⇒ х²=24 ⇒ х=√24.

Из прямоугольных ΔКАС и ΔКВА найдем катеты ΔАВС.

АВ=√(ВК²+АК²)=√(16+24)=2√10 см

АС=√(КС²+АК²)=√(36+24)=2√15 см

2) Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Пусть т. О - середина гипотенузы  ΔАВС. Тогда получаем два равнобедренных  ΔАВО  и ΔАСО с основаниями АВ и АС соответственно.

Из свойств сегментов окружностей известно, что угол сегмента окружности равен 2·arcsin( с/2R), где с-длина хорды, R-радиус окружности.

Тогда  ∠АОВ=2·arcsin( AB/BC) ⇒   ∠АОВ=2·arcsin( sin∠ACB)=2·∠ACB.

Соответственно:

∠АОС=2·arcsin( AС/BC) ⇒   ∠АОС=2·arcsin( sin∠AВС)=2·∠AВС.

Если нужен цифровой ответ, то

∠АОВ=2·∠ACB=2·arcsin( АВ/ВС)= 2·arcsin(2√10/10)=2·arcsin√\frac{2}{5}

∠АОС=2·arcsin( AС/BC)= 2·arcsin(2√15/10)=2·arcsin√\frac{3}{5}


Впрямоугольном треугольнике высота, опущенная из прямого угла делит гипотенузу н отрезки 4 см и 6 см
Впрямоугольном треугольнике высота, опущенная из прямого угла делит гипотенузу н отрезки 4 см и 6 см
4,6(48 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ