4 км/час скорость течения реки.
Пошаговое объяснение:
Пусть скорость течения реки = х км/час
Тогда: скорость катера по течению = (20 + х) км/ч,
скорость катера против течения = (20-х) км/ч
Составляем уравнение:
18 : (20 + х) + 20 : (20 - х) = 2 (час)
18 * (20 - х) + 20 * (20 + х) - 2 * (20 - х) * (20 + х) = 0
360 - 18 х + 400 + 20 х - (40 - 2 х) * (20 + х) = 0
760 + 2 х - (800 + 40 х - 40 х - 2 х^2) = 0
760 + 2 х - 800 +2 х^2 = 0
2 х^2 + 2 х - 40 = 0
Каждый член разделим на 2 и получим: х^2 + х - 20 = 0
Находим дискриминант, он равен 81 или 9^2, а далее по формуле - подставляем и получаем корни: х = -5 и х = 4
Подходит только положительное значение х = 4, так как скорость реки не может быть отрицательной.
Значит, скорость течения реки = 4 км/ч
Проверяем:
18 : (20 + 4) + 20 : (20 - 4) = 2 (час)
18 : 24 + 20 : 16 = 2 (час)
0,75 + 1,25 = 2 (час)
Пусть все расстояние между пунктами А и В будет единица/
Пусть мотоциклист до места встречи ехал х часов.
Велосипедист ехал 0,5+х ч ( выехал раньше мотоциклиста на 0,5 часа и на столько же дольше ехал)
Пешеход, соответственно, ехал до места встречи 2,5+х часов
Если принять расстояние от А до места встречи равным у, то
скорость мотоциклиста
у:х (расстояние делим на время в пути)
Пешехода у:( 2,5+х)
Велосипедиста у:( 0,5+х )
Продолжая движение, к пункту В они прибыли в разное время, проехав оставшееся расстояние 1-y км
Мотоциклист это расстояние преодолел за
(1-y):(у:х) =(х-ху):у
Пешеход -
(1-y):{у:( 2,5+х)}=(2,5+х-2,5у-ху):у
Велосипедист
(1-y):{у:( 0,5+х)}=(0,5+х-0,5у-ху):у
Время пешехода больше времени мотоциклиста на 1 час:
(2,5+х-2,5у-ху):у - (х-ху):у=1
2,5+х-2,5у-ху-х+ху=у
2,5=3,5у
у=5/7 всего расстояния ( от А до места встречи)
От места встречи до В проехали
1-5/7=2/7
Время мотоциклиста - расстояние от места встречи делим на скорость.
(2/7):(5/7:х)=2х:5
Время пешехода
(2х:5)+1
Время велосипедиста
(2/7):{5/7:(х+0,5)}=(2х+1):5
Разница времени между прибытием велосипедиста и пешехода
(2х:5)+1-(2х+1):5=(2х+5-2х-1):5=4/5 часа
1/5 часа=12 мин.
4/5 часа =48 минут.
ответ: На 48 минут.
Такие задачи можно решать графически.
Графический решения задач иногда даже проще и потому может быть предпочтительнее.
2. Из пункта A вышел пешеход, а из пункта B навстречу ему выехал одновременно велосипедист. После их встречи пешеход продолжал идти в B, а велосипедист повернул назад и тоже поехал в B. Известно, что пешеход пришёл в B на 2 часа позже велосипедиста, а скорость пешехода в 3 раза меньше скорости велосипедиста . Сколько времени от начала движения до встречи пешехода и велосипедиста?
Пусть расстояние между А и В будет единица.
Пусть от В до места встречи х км
Скорость пешехода примем за у, тогда
скорость велосипедиста 3у
От А пешеход до встречи шел (1-х):у часов
От В до встречи велосипедист шел х:3у часов, и это время одинаково:
(1-х):у =х:3у
Умножим обе части уравнения на 3у и получим
4х=3
х=3/4 всего пути
От места встречи до В 3/4 всего расстояния от А до В
Эти 3/4 расстояния пешеход шел
(3/4):у =3/4у часов
а велосипедист проехал за
(3/4):3у =1/4у часов
3/4у-1/4у=2 часа
1/2у=2
4у=1
у=1/4 всего пути
От А до места встречи пешеход шел
1-3/4=1/4 пути,
и это расстояние равно его скорости, поэтому он проходит его за
1/4 : 1/4= 1 час,
это же время, естественно, и велосипедист ехал от В до места встречи
8*8*8*9+56414