O - точка пересечения биссектрисы AL и медианы BM треугольники AOM и AOB равны по стороне и 2-м прилеж.к ней углам (AO общая, углы равны, т.к. AL биссектриса и треуг.прямоугольные по условию) => AB=AM треуг.MAB равнобедренный => биссектриса AO и медиана => MO=OB треуг.MOL и LOB равны по 2-м сторонам и углу между ними (OL общая и углы прямые) => ML=LB AC=BC т.к. треуг.ABC равнобедренный, AM=MC, т.к. BM медиана периметр ABC = AB+2AC = AM+2*2AM = 5AM периметр LMC=99=MC+CL+LM = AM+BC-BL+LM = AM+BC = AM+2AM = 3AM AM = 99/3 = 33 периметр ABC = 5*33 = 165
Первое - приводим к общему знаменателю, делаем действия с числителями, оставляя общий знаменатель сложим 3/8+3/5 1) приводим к общему знаменателю 3/8=15/40 3/5=24/40 2) складываем числители при общем знаменателе (15+24)/40=39/40 при необходимости сокращаем, выделяем целую часть и т.д. сложим 17/20+15/16 17/20=68/80 15/16=75/80 (68+75)/80=143/80=1 63/80 вычтем 15/16-3/4 здесь общий знаменатель 16, значит к нему приводим только 3/4=12/16 (15-12)/16=3/16 вычтем 1/2-4/5 1/2=5/10 4/5=8/10 (5-8)/10=-3/10 может, не очень понятно, но я не учитель. Объяснил, как смог!