80 (км/час) -скорость 1 автобуса.
120 (км/час) - скорость 2 автобуса.
Пошаговое объяснение:
Из пункта А в пункт В, расстояние между которыми 80 км, одновременно выехали два автобуса. В пути один из автобусов сделал остановку на 15 мин, но в пункт В прибыл на 5 мин раньше другого.
Известно, что его скорость в 1,5 раза больше скорости другого. Найдите скорость каждого автобуса.
Формула движения: S=v*t
S - расстояние v - скорость t – время
15 минут=15/60 часа, 5 минут=5/60 часа.
Выражение минут в части часа можно сократить, но в таком виде удобнее считать.
х - скорость 1 автобуса.
1,5х - скорость 2 автобуса.
80/х - время 1 автобуса.
80/1,5х+15/60 - время 2 автобуса.
По условию задачи уравнение:
80/х-80/1,5х=15/60+5/60
80/х-80/1,5х=20/60
80/х-80/1,5х=1/3
Умножить уравнение на 3х, чтобы избавиться от дроби:
3*80-2*80=х*1
240-160=х
х=80 (км/час) -скорость 1 автобуса.
1,5*80=120 (км/час) - скорость 2 автобуса.
Проверка:
80/80-80/120=1/3
1/3=1/3
1) 0,2^3 = 0,2 • 0,2 • 0,2 = 0,008.
2) 6^4 = 6 • 6 • 6 • 6 = 1296.
3) 5^3 = 5 • 5 • 5 = 125.
4) 1296 + 125 = 1421.
5) 1421^2 = 1421 • 1421 = 2019241
6) 0,008 • 2019241 = 16153,928.
Удачи)))