Пусть a, b, c - первые три члена арифметической прогрессии, тогда по условию:
а + b + с = 15 [1]
По свойству арифметической прогрессии:
b - а = с - b
2b = а + с подставим в уравнение [1], получим:
2b + b = 15
3b = 15
b = 5 - второй член арифметической прогрессии.
Тогда сумма первого и третьего членов:
а + с = 15 - 5
а + с = 10 ⇒ c = 10 - a
Переходим к геометрической прогрессии. По условию:
первый член = а + 1
второй член = b + 3 = 5 + 3 = 8
третий член = с + 9 = 10 - a + 9 = 19 - a
По свойству геометрической прогрессии:
не удовл.условию, так как искомая геометрическая прогрессия возрастающая.
Получили а = 3, тогда с = 10 - а = 10 - 3 = 7
Итак, первые три члена арифметической прогрессии: 3; 5; 7.
Найдем три первых члена геометрической прогрессии:
первый член = а + 1 = 3 + 1 = 4
второй член = 8
третий член = с + 9 = 7 + 9 = 16
Искомая геометрическая прогрессия: 4; 8; 16; ...
Найдем сумму 7 первых членов.
b₁ = 4 - первый член
q = b₂/b₁ = 8/4 = 2 - знаменатель прогрессии
Искомая сумма:
ответ: 508
Пошаговое объяснение:
Решение задачи:
Пусть Х - это количество килограммов апельсинов в первом ящике, тогда
4 * Х - это количество килограммов апельсинов во втором ящике,
Х - 3 - это количество килограммов апельсинов в третьем ящике.
Составим уравнение:
Х + 4 * Х + Х - 3 = 75.
У выражение:
6Х - 3 = 75.
Перенесём цифру три из правой части уравнения в левую часть уравнения со знаком плюс:
6Х = 75 +3.
6Х = 78.
Найдём сколько килограммов апельсинов лежит в первом ящике:
Х = 78 / 6.
Х = 13 (килограммов).
Правильный ответ задачи: 13 килограммов апельсинов лежит в первом ящике.
68:2+16*4 = 34 + 64 = 98
(может там 95?) 95:5-38:2= 19-19 =0
420:6*5+639=70*5+639=350+639=989
520-(190-100:4)= 520-(190-25)=520-165=355
4800:60*20+(28397-9148)=80*20+19249=1600+19249=20849