До появления «Повести временных лет» на Руси существовали другие сборники сочинений и исторические записки, составляли которые в основном монахи. Однако все эти записи носили локальный характер и не могли представить полную историю жизни Руси. Идея создания единой летописи принадлежит монаху Нестору, жившему и работавшему в Киево-Печерском монастыре на стыке 11-го и 12-го вв.
Среди ученых существуют некоторые расхождения по поводу истории написания повести. Согласно общепринятой теории, летопись была написана Нестором в Киеве. В основу первоначальной редакции легли ранние исторические записи, легенды, фольклорные рассказы, поучения и записи монахов. После написания Нестор и другие монахи несколько раз перерабатывали летопись, а позднее сам автор добавил в нее христианскую идеологию, и уже эта редакция считалась окончательной. Что касается даты создания летописи, то ученые называют две даты - 1037 и 1110 гг.
Летопись, составленная Нестором, считается первой русской летописью, а ее автор - первым летописцем. К сожалению, до наших дней не дошло древних редакций, самый ранний вариант, который существует сегодня, датируется 14-м в.
Дифференциал функции
dy=f′(x)dx
Как видим, для нахождения дифференциала нужно умножить производную на dx. Это позволяет из таблицы формул для производных сразу записать соответствующую таблицу для дифференциалов.
Полный дифференциал для функции двух переменных: Дифференциал функции
Полный дифференциал для функции трех переменных равен сумме частных дифференциалов: d f(x,y,z)=dxf(x,y,z)dx+dyf(x,y,z)dy+dzf(x,y,z)dz
Определение. Функция y=f(x) называется дифференцируемой в точке x0, если ее приращение в этой точке можно представить в виде ∆y=A∆x + α(∆x)∆x, где A – константа, а α(∆x) – бесконечно малая при ∆x → 0.
Требование дифференцируемости функции в точке эквивалентно существованию производной в этой точке, причем A=f’(x0).
Пусть f(x) дифференцируема в точке x0 и f '(x0)≠0, тогда ∆y=f’(x0)∆x + α∆x, где α= α(∆x) →0 при ∆x→0. Величина ∆y и каждое слагаемое правой части являются бесконечно малыми величинами при ∆x→0. Сравним их: , то есть α(∆x)∆x – бесконечно малая более высокого порядка, чем f’(x0)∆x.
, то есть ∆y~f’(x0)∆x. Следовательно, f’(x0)∆x представляет собой главную и вместе с тем линейную относительно ∆x часть приращения ∆y (линейная – значит содержащая ∆x в первой степени). Это слагаемое называют дифференциалом функции y=f(x) в точке x0 и обозначают dy(x0) или df(x0). Итак, для произвольных значений x
dy=f′(x)∆x. (1)
Полагают dx=∆x, тогда
dy=f′(x)dx. (2)
ПРИМЕР. Найти производные и дифференциалы данных функций.
а) y=4tg2x
дифференциал:
б)
дифференциал:
в) y=arcsin2(lnx)
дифференциал:
г)
=
дифференциал:
ПРИМЕР. Для функции y=x3 найти выражение для ∆y и dy при некоторых значениях x и ∆x.
Решение. ∆y = (x+∆x)3 – x3 = x3 + 3x2∆x +3x∆x2 + ∆x3 – x3 = 3x2∆x+3x∆x2+∆x3; dy=3x2∆x (взяли главную линейную относительно ∆x часть ∆y). В данном случае α(∆x)∆x = 3x∆x2 + ∆x3.
надеюсь правильно
Выражение x^2dy=3y^2dx, y(1)=2 для дальнейших вычислений представлено в математическом виде как x^2*d3*y^2*dxy*(1). В этом выражении необходимо правую часть перенести со знаком минус в левую часть
4см=4см; 15дм=150см
б) 3т 8ц 67кг=3867кг
124т 4кг=124004кг
710ц=71000кг
в) 3кг 400г=3400г
2кг 30г=2030г
15кг=15000г
2225>1232
2225<4809
3104<4809
3104>1232
5км 060м=5060м
2км 280м=2280м
1)5060+2280=7340(м)-вторая бригада
2)5060+7340=12400(м)- заасфальтировали две бригады
3) 12400+965=13365(м)-всего
ответ: 13365м