1) 3 3/23 * 23/27 = 72/23* 23/27= 72/27 = 24/9 = 8/3
2) 1 1/5 * 1/6 = 6/5 * 1/6 = 1/5
3) 14 7/15 - 8/3 = 217/15 - 8/3 = 217/15 - 40/15 = 177/15
4) 177/15 - 1/5 = 177/15 - 3/15 = 174/15 = 11 9/15 = 11 3/5
1) 5 8/9 : 1 17/36 = 53/9 : 53/36 = 4
2) 4 + 1 1/4 = 5 1/4
3) 5 1/4 * 5/21 = 21/4 * 5/21 = 5/4 = 1 1/4
1) - 3,25 - 2,75 = - 6
2) - 6 : - 0,6 = 10
3) 0,8 * - 7 = - 5,6
4) 10 + (- 5,6) = 10 - 5,6 = 4,4
1) - 1 3/8 - 2 5/12 = - 11/8 - 29/12 = - 33/24 - 58/24 = - 91/24
2) - 91/24 : 5 5/12 = - 91/24 : 65/12 = - 91/130 = - 7/10
Пошаговое объяснение:
y = 2/5x-1/5 (1)
2x-5y-34=0
y = 2/5x-34/5 (2)
x+3y-6=0
y = -1/3x+2 (3)
Прямые (1) и (2) параллельны, т.к. угловые коэффициенты равны. Значит (1) и (2) - противоположные стороны ромба.
Найдём координаты точек пересечения диагонали со сторонами ромба:
1) 2/5x-1/5 = -1/3x+2 ×15
6x-3 = -5x+30
6x+5x = 30+3
11x = 33
x = 3
y(3) = 2/5*3-1/5 = 6/5-1/5 = 5/5 = 1
A(3; 1)
2) 2/5x-34/5 = -1/3x+2 ×15
6x-102 = -5x+30
6x+5x = 102+30
11x = 132
x = 12
y(12) = 2/5*12-34/5 = 24/5-34/5 = -10/5 = -2
C(12; -2)
AC - диагональ ромба. Вторая диагональ BD проходит перпендикулярно AC через её середину. Найдём точку O пересечения диагоналей. Это - середина отрезка AC.
O((3+12)/2; (1-2)/2) = (15/2; -1/2) = (7,5; -0,5)
Найдём уравнение диагонали BD. Это прямая, проходящая через точку O перпендикулярно AC. Угловой коэффициент этой прямой k = 1/3.
y-(-0,5) = -1/(-1/3)·(x-7,5)
y+0,5 = 3*(x-7,5)
y+0,5 = 3x-22,5
y = 3x-23
Найдём точки пересечения диагонали BD с прямыми (1) и (2). Это и будут координаты вершин B и D.
1) 2/5x-1/5 = 3x-23 ×5
2x-1 = 15x-115
15x-2x = 115-1
13x = 114
x = 114/13 = 8 10/13
y(114/13) = 2/5*114/13-1/5 = 228/65-13/65 = 215/65 = 43/13 = 3 4/13
B(8 10/13; 3 4/13)
2) 2/5x-34/5 = 3x-23 ×5
2x-34 = 15x-115
15x-2x = 115-34
13x = 81
x = 81/13 = 6 3/13
y(81/13) = 2/5*81/13-34/5 = 162/65-442/65 = -310/65 = -62/13 = -4 10/13
D(6 3/13; -4 10/13)
ответ: A(3; 1), B(8 10/13; 3 4/13), C(12; -2), D(6 3/13; -4 10/13)