Пошаговое объяснение:
а) НОД(8,4)=2*2*2=8
НОД(8,6)=2
НОД(8,10)=2;
НОД(8,12)=2*2=4
НОД(8,15)=1
8=2*2*2; 4=2*2; 6=2*3; 10=2*5; 12=2*2*3; 15=3*5
б) НОД(15, 3)=3
НОД(15, 25)=5
НОД(15, 35)=5
НОД(15, 42)=1
НОД(15, 53)=1
15=5*3; 3=3; 25=5*5; 35=5*7; 42=2*3*7; 53=53
в) НОД(11, 7)=1
НОД(11, 10)=1
НОД(11, 55)=11
НОД(11, 121)=11
НОД(11, 333)=1
11=11; 7=7; 10=2*5; 55=5*11; 121=11*11; 333=3*3*37
г) НОД(14, 6)=2
НОД(14, 28)=2*7=14
НОД(14, 21)=7
НОД(14, 35)=7
НОД(14, 997)=1
14=2*7; 6=2*3; 28=2*2*7; 21=3*7; 35=5*7; 997=997 (997 не делится нацело ни на 2 ни на 7)
На каждой клетке доски размером 9×9 сидит жук, По свистку каждый из жуков переползает в одну из соседних по диагонали клеток. При этом в некоторых клетках может оказаться больше одного жука, а некоторые клетки окажутся незанятыми.
Докажите, что при этом незанятых клеток будет не меньше 9.На клетчатой бумаге даны произвольные n клеток. Докажите, что из них можно выбрать не менее n/4 клеток, не имеющих общих точекПлоскость раскрашена в три цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.В левый нижний угол шахматной доски 8×8 поставлено в форме квадрата 3×3 девять фишек. Фишка может прыгать на свободное поле через рядом стоящую фишку, то есть симметрично отражаться относительно её центра (прыгать можно по вертикали, горизонтали и диагонали). Можно ли за некоторое количество таких ходов поставить все фишки вновь в форме квадрата 3×3, но в другом углу:
а) левом верхнем,
б) правом верхнем?
Памойму правильно если не правильно зделайте отметить нарушения.
1,6y-3,2-2+1,2y=-3,2y-1,6
6y=3,6
y=0,6