Сравнивая данное уравнение с общим уравнением плоскости A*x+B*y+C*z+D=0, убеждаемся, что наше уравнение задаёт плоскость, где A=3, B=-4, C=5, D=-2. Так как ни одно из чисел A,B,C не равно нулю, то эта плоскость не параллельна ни одной из координатных плоскостей и ни одной из координатных осей. И поскольку D≠0, то плоскость не проходит через начало координат. Для определения линии уровня положим z=const=0, тогда уравнение примет вид 3*x-4*y-2=0. Это уравнение задаёт прямую на плоскости XOY. Подставляя в это уравнение x=0, находим y=-0,5 и получаем точку M1(0,-0,5) - одну из точек, через которую проходит прямая. Подставляя в уравнение y=0, находим x=2/3 и получаем вторую точку прямой M2(2/3,0). Соединяя эти точки, получаем линию уровня.
1) ▪Пусть - а сторона квадрата. ▪Найдем 30% от а - (0,3а) ▪Увеличим сторону квадрата на 30%: (а + 0,3а=1,3а) ▪Площадь квадрата: S(кв.) = а^2 ▪Площадь новового квадрата S= (1,3а)^2 = 1,69а^2 ▪S - S(кв.) = 1,69а^2 - а^2 = 0,69а^2 ▪что составляет 0,69 = 69% ▪ответ: Если сторону квадрата увеличить на 30%, тогда площадь увеличиться на 69%.
2) ▪Пусть - а сторона квадрата. ▪Найдем 10% от а - (0,1а) ▪Уменьшим сторону квадрата на 10%: (а - 0,1а=0,9а) ▪Площадь квадрата: S(кв.) = а^2 ▪Площадь уменьшенного квадрата S= (0,9а)^2 = 0,81а^2 ▪ S(кв.) - S = а^2 - 0,81а^2 = 0,19а^2 ▪что составляет: 0,19 = 19% ▪ответ: Если сторону квадрата уменьшить на 10%, тогда площадь уменьшиться на 19%.
1566. ▪Пусть а - длинна прямоугольника, b - ширина прямоугольника. ▪Найдем: 15% от а = 0,15а 20% от b = 0,2b ▪Если длинну уменьшить на 15%: а - 15% = а - 0,15а = 0,85а ▪Если ширину увеличить на 20%: b + 20% = b + 0,2b = 1,2b ▪Площадь прямоугольника: S(1) = аb ▪Площадь новового прямоугольника: S(2) = аb = 0,85а × 1,2b = 1,02ab ▪S(2) - S(1) = 1,02ab - ab = 0,02аb ▪что составляет 0,02 = 2% ответ: Площадь прямоугольника изменится на 2%
1. Пусть х - сторона исходного квадрата х² - его площадь, которая составляет 100% 30% + 100% = 130% 130% = 1,3 1,3х - новая сторона (1,3х)² = 1,69х² - новая площадь 1,69х² - х² = 0,69х² Т.к. х² составляет 100%, то подставив, получим: 0,69 ·100% = 69% ответ: на 69% увеличится 2. Пусть х - сторона исходного квадрата х² - его площадь, которая составляет 100% 100% -10% = 90% 90% = 0,9 0,9х - новая сторона (1,9х)² = 0,81х² - новая площадь х² - 0,81х² = 0,19х² Т.к. х² составляет 100%, то подставив, получим: 0,19 ·100% = 19% ответ: на 19% уменьшится