Решаем систему сложения. Умножаем первое уравнение на (-12), второе на (19): 144х-228у=216 -323х+228у=-380 Складываем -179х=-164 х=164/179 х≈0,9 Умножаем первое уравнение на (-17), второе на (12): 204х -323у =306 -204х+144у=-240 Складываем -179у=66 у=-66/179 у≈-0,4
Графическое решение. Строим прямую -12х=19у=-18
19у=-18+12х 19·у=6·(-3+2х) Чтобы получить целочисленные координаты, берем (-3+2х) кратным 19
-3+2х=19 ⇒ 2х=22; х=11 19·у=6·19⇒ у=6 (11;6)
-3+2х=-19 ⇒2х=-16; x=-8 19·у=6·(-19) ⇒ у=-6 Проводим прямую ( на рисунке красного цвета) через точки (11;6) и (-8; -6)
Строим прямую -17х+12у=-20
17х=12у-20 17·х=4·(3у-5) Чтобы получить целочисленные координаты, выбираем (3у-5) кратным 17
3у-5=34⇒ 3у=39; у=3.
17х=4·34 ⇒ х=8 (8;3)
3у-5=-17 ⇒ 3у=-12; у=-4 17х=4·(-17) ⇒х=-4 (-4;-4)
Проводим прямую (синего цвета)через точки (8;3) и (-4; 4). Точка пересечения имеет координаты (≈0,9; -0,4)
В задаче не сказано какой формы будут клумбы - вот и задумался садовник. Рисунок к задаче в приложении.
Если стороны равны - а , то это ромб или квадрат. Тогда периметр по формуле: Р = 4*а.
Если стороны разные: a и b, то это параллелограмм или прямоугольник и периметр по формуле: P = 2*(a + b).
1) а = b = 4 м. Р1 = 4*а = 4*4 = 16 м - периметр первой клумбы.
2) Р2 = 2*(6 + 4) = 2*10 = 20 м - периметр второй клумбы
3) Р3 = 2*(7 + 2) = 2*9 = 18 м - периметр третьей клумбы.
4) Р4 = 2*(5 + 3) = 2*8 = 16 м - периметр четвёртой клумбы.
И теперь длину изгороди на все четыре клумбы - сумма отдельных.
5) Р = 16+20+18+16 = 70 м на все четыре клумбы - ОТВЕТ