Задана функция
1) Найдем область определения функции:
, то есть
2) Исследуем функцию на четность:
Функция нечетная, непериодическая.
3) Найдем точки пересечения графика функции с осями координат:
Если , то
, значит
— точка пересечения с осью
.
Если , то есть
, то:
Значит ,
и
— точки пересечения с осью
.
4) Асимптот данная функция не имеет, поскольку она непрерывная на всей области определения.
5) Найдем производную и критические (стационарные) точки функции:
Из уравнения имеем критические точки:
6) Найдем промежутки возрастания, убывания и экстремумы функции, заполнив таблицу (см. вложение).
7) Исследуем функцию на выпуклость и точки перегиба с второй производной:
Если на промежутке дифференцируемая функция
имеет положительную вторую производную, то есть
для всех
, то график этой функции на
является выпуклым вниз; если на промежутке
дифференцируемая функция
имеет отрицательную вторую производную, то есть
для всех
, то график этой функции на
является выпуклым вверх.
Решим уравнение:
Имеем корни:
Систематизируем данные, полученные по второй производной, в таблице (см. вложение)
8) Изобразим график заданной функции (см. вложение).
9) Из графика можем найти область значений функции:
, то есть
ответ:
) в знаменателе находится многочлен.
2) многочлены находятся и в числителе и в знаменателе.
3) один или оба многочлена могут быть под корнем.
4) многочленов и корней, разумеется, может быть и больше.
пошаговое объяснение:
основные же предпосылки для применения признака даламбера следующие:
1) в общий член ряда («начинку» ряда) входит какое-нибудь число в степени, например, , , и так далее. причем, совершенно не важно, где эта штуковина располагается, в числителе или в знаменателе – важно, что она там присутствует.
2) в общий член ряда входит факториал. с факториалами мы скрестили шпаги ещё на уроке числовая последовательность и её предел. впрочем, не помешает снова раскинуть скатерть-самобранку: