Пошаговое объяснение:
Вспомним формулу нахождения скорости, если мы знаем расстояние и время. Она выглядит следующим образом:
V = S:t, где V - скорость, S - расстояние, t - время.
Скорость велосипедиста в три раза больше скорости пешехода, так как пешеход то же расстояние в три раза медленнее.
Обозначим скорость пешехода за X, тогда скорость велосипедиста - 3x.
Из условия мы знаем, что скорость пешехода меньше на 8 км/ч скорости велосипедиста, значит 3x на 8 км/ч больше, чем x.
Из этого следует уравнение:
3x - 8 = x
Решаем:
3x - x = 8
2x = 8
x = 4 км/ч - скорость пешехода
3x = 4*3 = 12 км/ч - скорость велосипедиста.
ответ: V пешехода - 4 км/ч,
V велосипедиста - 12 км/ч.
х-2,093=10-2,793
х-2,093=7,207
х=7,207+2,093
х=9,3
Проверка
(9,3-2,093)+2,793=10
1)9,3-2,093=7,207
2)7,207+2,793=10
10+(12,993-х)=12,093
12,993-х=12,093-10
12,993-х=2,093
х=12,993-2,093
х=10,9
Проверка
10+(12,993-10,9)=12,093
1)12,993-10,9=2,093
2)10+2,093=12,093
(х+2,093)-2,93=10
х+2,093=10+2,93
х+2,093=12,93
х=12,93-2,093
х=10,837
Проверка
(10,837+2,093)-2,93=10
1)10,837+2,093=12,93
2)12,93-2,93=10