ответ:
пошаговое объяснение:
пусть первый рабочий выполнит один всю работу за х ч,
тогда второй рабочий выполнит эту же работу один за (х+5) ч.
примем всю работу за единицу (1), тогда
за 1 час первый рабочий сделает 1/х часть всей работы,
а второй рабочий за 1 час сделает 1/(х+5) часть всей работы;
за 6 часов первый рабочий сделает 6/х часть работы,
а второй рабочий за 6 часов сделает 6/(х+5) часть всей работы.
вместе за 6 часов они выполнят всю (1) работу.
составим уравнение:
6/x + 6/(x+5) =1
6(x+5)+6x=x(x+5)
6x+30+6x=x²+5x
x²-7x-30=0
d=169=13²
x₁=(7+13)/2=20/2=10
x₂=(7-13)/2=-6/2=-3 < 0 - лишний корень
х=10 ч - время первого рабочего
х+5=10+5=15 ч -время второго рабочего
В этом же интервале имеются 142 числа, кратных 7 : [999 : 7] = 142* .
Среди 142 чисел, кратных 7, имеются числа, которые делятся также и на 5, то есть кратные 35.
Всего таких чисел 28: [999 : 35]= 28* .
Эти 28 чисел уже учтены в числе 199, найденном ранее.
Поэтому количество чисел, меньших 1000, которые делятся либо на 5, либо на 7, равно 199 + 142 - 28 = 313.
В рассматриваемом интервале остается 999 - 313 = 686 чисел,
которые не делятся ни на 5, ни на 7.
* [N] - целая часть числа N . Например, [13,45] = 13.
2).Уравнения сложить почленно. (получится уравнение с одной переменной)
3). Решить уравнение и найти эту переменную.
4). Подставить полученное значение в любое уравнение системы и решить его.