а) Запишем уравнение в следующем виде: tg(x)dy(x)/dy-y(x)=2
dy(x)/dy=(2-y(x))*ctg(x)
Делим обе части на (2-y(x)):
(dy(x)/dy)/(2-y(x))=ctg(x)
Интегрируем обе части по Х:
инт((dy(x)/dy)/(2-y(x)))=инт(ctg(x)dx)
Получаем: lg(y+2)=lg(sinx)+C1
Т.к. lg(y+2)-lg(sinx)=lg((y+2)/sin(x)), то lg((y+2)/sin(x))=С1
(y+2)/sin(x)=е^C1
y=C1*(sin(x)-2)
б) Запишем характеристическое уравнение: 3*k^2-2*k-8=0
Корни этого уравнения k1=(2-корень(2^2-4*3*(-8)))/(2*3)=-8/6=-4/3
k2=(2+корень(2^2-4*3*(-8)))/(2*3)=2
Решение данного уравнения будет иметь вид e^k*x.
Общее решение: y=e^(-4*x/3)*C1+e^(2x/)*C2
Для начала проверим, будет ли делиться на 3 число, состоящее из 666 единиц. Если сумма цифр числа делится на три, то и само число будет делиться на три.
1 * 666 = 666;
6 + 6 + 6 = 18, делится на 3;
значит и число из 666 единиц делится на 3.
Начнем делить число в столбик
Начнем делить число 111...111 на 3 в столбик.
11 : 3 = 3 (остаток 2, спускаем вниз 1);
21 : 3 = 7 (остатка нет, спускаем 1);
1 : 3 = 0 (остаток 1, спускаем 1);
11 : 3 = 3 (остаток 2, спускаем 1);
21 : 3 = 7 (остаток 0, спускаем 1);
1 : 3 = 0 (остаток 1, спускаем 1);
11 : 3 = 3 (остаток 2, спускаем 1), то есть все повторяется.
Найдем закономерность повторений.
Получается ответ: 370370...
Высчитаем количество цифр получившегося числа
Все число, состоящее из 666 единиц, можно разбить на тройки по три единицы (111, 111).
Мы начали делить с 11 (двузначное) на 3, получилось 3 (однозначное, то есть число будет меньше на один разряд).
Значит, число будет состоять из 665 цифр. Каждая тройка единиц даст в ответе три цифры, из которых один ноль, кроме первых трех единиц, они дадут две цифры.
То есть число будет выглядеть так: 37 037 037...037.
Посчитаем количество нулей в получившемся числе: 666 : 3 = 222. Но так как в первой тройке нет нуля, значит, 222 - 1 = 671.
ответ: В получившемся числе будет 221 ноль.
2.
3.
4.