А(-1;0),В(4;0),С(1;-2), найти:
1) уравнение высоты АД.
Высота АД – это перпендикуляр к стороне ВС.
Вектор ВС = (1-4; -2-0) = (-3; -2).
Уравнение прямой ВС: (х – 4)/(-3) = у/(-2) каноническое
-2х + 8 = -3у
2х - 3у – 8 = 0 общее.
Для прямой в общем виде Ax + By + C = 0 перпендикулярная прямая меняет коэффициенты А и В на –В и А (из условия, что их скалярное произведение равно 0).
Тогда уравнение перпендикулярной прямой к прямой ВС будет иметь вид:
3x + 2y + С = 0. Для определения слагаемого С подставим координаты точки А(-1; 0).
3*(-1) + 2*0 + C = 0, отсюда С = 3.
ответ: 3x + 2y + 3 = 0.
2) уравнение прямой, проходящей через А параллельно ВС.
Коэффициенты при переменных у этой прямой такие же, как и у прямой ВС: 2х - 3у + С = 0. Подставим координаты точки А(-1; 0).
2*(-1) – 3*0 + С = 0, отсюда С = 2.
Получаем уравнение 2х - 3у + 2 = 0.
3) уравнение прямой, соединяющей середины сторон АВ и ВС.
Коэффициенты при переменных у этой прямой такие же, как и у прямой АС. Вектор АС = С(1;-2) - А(-1;0) = (2; -2).
Уравнение АС: (х + 1)/2 = у/(-2) или х + у + 1 = 0.
Найдём середину Д стороны АВ.
Д = (А(-1;0)+В(4;0))/2 = (1,5; 0).
Подставим координаты точки Д в уравнение прямой х + у + С = 0.
1,5 + 0 + С = 0, отсюда С = -1,5.
Уравнение х + у - 1,5 = 0 или в целых числах 2х + 2у - 3 = 0.
4) угол А треугольника АВС. А(-1;0),В(4;0),С(1;-2).
Находим векторы и их модули.
АВ = (4-(-1); 0-0) = (5; 0). |AB| = 5.
AC = (2; -2). |AC) = √(2² + (-2)²) = √(4 + 4) = √8 = 2√2.
Теперь находим косинус угла А.
cos A = (5*2 + 0*(-2))/(5*2√2) = 10/(10√2) = 1/√2.
Угол А = arccos(1/√2) = 45 градусов.
5/Задание № 1:
Назовите число, утроенная четверть которого равна половине от 120.
РЕШЕНИЕ: Если утроенная четверть равна (1/2)*120=60, то просто четверть равна 60/3=20, а значит само число 20*4=80.
ОТВЕТ: 80
5/Задание № 2:
Сколько четырёхзначных чисел, которые делятся на 45, две средние цифры которых 88?
РЕШЕНИЕ: Число, делящееся на 45, делится на 5 и делится на 9. Значит, оно должно оканчиваться на 0 или 5, и его сумма цифр должна делиться на 9.
Обозначим первую цифру за х.
Если последняя цифра 0, то сумма цифр равна х+8+8+0=х+16. Учитывая, что (х+16) должно делиться на 9, а само х - однозначное, получаем единственное решение при х=2.
Если последняя цифра 5, то сумма цифр равна х+8+8+5=х+21. Учитывая, что (х+21) должно делиться на 9, а само х - однозначное, получаем единственное решение при х=6.
Итак, всего два числа 2880 и 6885 удовлетворяют условию.
ОТВЕТ: 2 числа
5/Задание № 3:
Сумма двух чисел равна 627. Одно из чисел оканчивается нулём. Если этот нуль зачеркнуть, то получится второе число. Найдите разность этих двух чисел.
РЕШЕНИЕ: Пусть первое число 10х. При зачеркивании последнего нуля оно становится в 10 раз меньше, то есть становится равно х. Их сумма по условию:
10х+х=627
11х=627
х=627/11
х=57
Разность чисел 10х-х=9х=9*57=513
ОТВЕТ: 513
5/Задание № 4:
У Вани было 140 рублей монетами достоинством 2, 5 и 10 рублей. Двухрублёвых монет было в 5 раз больше, чем пятирублёвых, а десятирублёвых в 2 раза больше, чем пятирублёвых. Сколько всего монет было у Вани?
РЕШЕНИЕ: Пусть у Вани было х пятирублевых монет, тогда двухрублёвых было 5х, а десятирублёвых было 2х. Всего монет в этом случае было х+5х+2х=8х. Общая сумма денег:
5х+2*5х+10*2х=140
5х+10х+20х=140
35х=140
х=140/35
х=4
Число монет 8х=8*4х=32
ОТВЕТ: 32 монеты
2 - 8.31-7.2+1.89
3 - 0.7+4.8-6 1/8
4 - -4 5/12-3 /16 + 1 5/12