ответ:
перенумеруем пассажиров цифрами от 1 до 9. пусть хк означает, что "к"-тый пассажир сел в вагон с номером хк ( "к" от 1 до 9). поскольку любой из пассажиров случайно садится в любой вагон, то для любого "к" число хк=1, 2 или 3. итак, имеется всего 3^9 способов рассадки пассажиров. благоприятными из них будут те последовательности (х1,х2, ..х9), в которых встретятся ровно 3 единицы, три двойки и 3 тройки. таких вариантов будет
р (3,3,3)=9! /(3! 3! искомая вероятность
р=р (3,3,3)/3^9. вычисления проведи сама.
+2345
5432
4523
12300
Наименьшее число принимаем за х, соответственно, первое и второе четырехзначное число будет выглядеть след. образом: первое - х х+1 х+2 х+3; второе - х+3 х+2 х+1 х. Число Х может измеряться от 1 до 6.
х х+1 х+2 х+3
х+3 х+2 х+1 х
2х+3 2х+3 2х+3 2х+3
Т.о., сложение цифр первых четырехзн. чисел дает одно число.
При суммировании трех четырехзначных чисел получается 1 2300. Значит, последовательнось цифр третьего 4хзначного числа будет такой: х+2 х+3 х х+1. (запись следует ниже)
Итак, получаем:
+1 +1 +1 - 1 дес., т.к. по сумме1 цифр чисел у нас получается -12,т.е. +1
х х+1 х+2 х+3
х+3 х+2 х+1 х
х+2 х+3 х х+1
1 2 3 0 0
Получаем уравнение 3х+6 = 12 или 3х + 4 +10 ; х=2
тогда изначально у:х=z
следовательно (у-7х):х=у:х-7х:х=z-7
получается, частное уменьшилось на 7