х₁=-4; х₂=-0,8
Пошаговое объяснение:
Раскрываем модуль и решаем как обычные уравнения. Вместе с этим обязательно нужно принимать во внимание, что при раскрытии модуля число модуля может быть как положительным так и отрицательным. После раскрытия модуля получаем уравнение:
0,5х-2=2х+4
2х-0,5х=-2-4
1,5х=-6
х=-6:1,5
х₁=-4
Проверка: (подставляем в уравнение найденное значение х₁=-4)
0,5*(-4)-2=2*(-4)+4
-2-2=-8+4
-4=-4
Дальше рассмотрим второй случай, с модулем отрицательного числа
0,5х-2=-2х-4
0,5х+2х=-4+2
2,5х=-2
х=-2:2,5
х₂=-0,8
Проверка: (подставляем в уравнение найденное значение х₂=-0,8
0,5*(-0,8)-2=-2*(-0,8)-4
-0,4-2=1,6-4
-2,4=-2,4
х₁=-4; х₂=-0,8
Пошаговое объяснение:
Раскрываем модуль и решаем как обычные уравнения. Вместе с этим обязательно нужно принимать во внимание, что при раскрытии модуля число модуля может быть как положительным так и отрицательным. После раскрытия модуля получаем уравнение:
0,5х-2=2х+4
2х-0,5х=-2-4
1,5х=-6
х=-6:1,5
х₁=-4
Проверка: (подставляем в уравнение найденное значение х₁=-4)
0,5*(-4)-2=2*(-4)+4
-2-2=-8+4
-4=-4
Дальше рассмотрим второй случай, с модулем отрицательного числа
0,5х-2=-2х-4
0,5х+2х=-4+2
2,5х=-2
х=-2:2,5
х₂=-0,8
Проверка: (подставляем в уравнение найденное значение х₂=-0,8
0,5*(-0,8)-2=-2*(-0,8)-4
-0,4-2=1,6-4
-2,4=-2,4
(10у+х) - число Васильків
(10х+у)+(10у+х)=11х+11у=11(х+у)
якщо 11(х+у) це квадрат деякого числа, то очевидно, що х+у=11, тоді це можуть бути такі числа:
29 і 92
38 і 83
47 і 74
56 і 65