a) log(2) 3x+5= log(2) 1 ОДЗ
3x+5=1 3x+5>0
3x=-4 x>-5/3
x=-4/3
b) 25x=1/5
x=1/5: 25=1/5 * 1/25 =1/125
ответ:
пошаговое объяснение:
возьмем какую-либо вершину. просто выбрали любую. теперь "идем" по ребрам графа, не проходя по каждому ребру более 1 раза. поскольку циклов нет, рано или поздно мы "" в какую-нибудь вершину, у которой только 1 ребро, по которому мы в нее зашли. заметим, что тогда ее степень равна 1. возьмем и выкинем эту вершину и ее единственное ребро из графа. теперь кол-во вершин в графе - n-1, а ребер m-1 (m - кол-во ребер в изначальном графе). при этом связности мы не испортили, т.к. у нее было только одно ребро, которое мы выкинули с этой же вершиной!
проделаем ту же операцию. таким образом мы уменьшаем кол-во ребер и вершин каждым шагом на 1. рассмотрим граф, в котором осталось 2 вершины. одна из этих вершин имеет степень 1. значит и вторая тоже (при условии, что нет двойных ребер, но граф связен, поэтому их нет). уберем последнюю "единичную" вершину. у нас осталась одна вершина и ни одного ребра. а значит вершин изначально было на 1 больше, чем ребер. доказано.
p.s.: где достал(а)? какой город? )
подробнее - на -
log2(3x+5)=0 , х>-5/3
3х+5=1
3х=-4
х=-4/3
х=-1 1/3
25х=1/5
х=1/5*1/25
х=1/125
х=0,008