Дано:
L=8 см
∠β = 30°
Найти:
V=?
S=?
Обычно, в треугольной пирамиде проекция бокового ребра на основание равна две третьих высоты. (2/3)*h (это высота основания пирамиды).
1) (2/3)*h=8*cos 30°=8√3/2=4√3 см
2) Высота основания h=(3/2)*4√3=6√3 см
3) а=h/cos 30°=6√3/(√3/2)=12 см (Сторона основания)
4) Н= L*sin 30°=8*(1/2)=4 см (Высота пирамиды)
5) А=√(Н² + (h/3)²)=√(16 + (6√3/3)²)=√(16 + 12)=√28=2√7≈5,292 см (Апофема "А" боковой грани)
6) S1=a²√3/4=12²√3/4=36√3≈62,3538 см² (Площадь основания)
7) S2=(1/2)РА=(1/2)*(3*12)*(2√7)=36√7 ≈ 95,25 см². (Площадь боковой поверхности)
8) S=S1+S2=62,3538+95,247=157,6008 см² (Вся поверхность)
9) V=(1/3)SoH=(1/3)*62,3538*4=83,1384 см³
ответ: S=157,6008 см², V=83,1384 см³.
x dx 1 2x dx 1 d(7+x²) 1
∫ = ∫ = ∫ = ln(7+x²)+C
7+x² 2 7+x² 2 7+x² 2
[1/2 *ln(7+x²)+C ]¹= 1/2*[ 2x /(7+x²)+0]= x /(7+x²)
x+18 (x-2)+20 1 2(x-2) dx
2) ∫dx=∫ dx= ∫ dx+20 ∫ =
x²-4x-12 (x-2)²-16 2 (x-2)²-16 (x-2)²-16
1 1 | x-2-4 | 1 5 | x-6 |
= *ln|(x-2)²-16|+20 * *ln || +C= *ln |x²-4x-12|+*ln || +C
2 2*8 | x-2+4 | 2 4 | x+2 |
3) ∫(3-x) cosx dx=[ u=3-x , du=-dx , dv=cosx dx , v=sinx ] =(3-x)sinx+∫ sinx dx=
=(3-x)sinx-cosx+C
[(3-x)sinx-cosx]¹= -sinx+(3-x)cosx+sinx +0=(3-x)cosx
1) т.к. нет ни корней, ни деления, то х может принимать любые значения от -∞ до +∞
x∈(-∞; +∞) - это область определения
2) т.к. x² всегда неотрицательно, 3x² + 2 ≥ 3*0 + 2 = 2
т.е. f(x) ≥ 2
и она может принимать любые значения больше либо равны 2
f(x) ∈ [2; +∞) - это множество значений