Незнайка написал три различных шестизначных числа. из каждого числа он вычел число, образованное его тремя первыми цифрами (не меняя порядка цифр) в результате незнайка получил три одинаковые разности. докажите, что он не умеет считать
Если A – число, образованное тремя первыми цифрами шестизначного числа, B – число, образованное тремя последними цифрами, то само число равно 1000A + B, а разность между самим числом и числом, образованным первыми тремя цифрами, равна 1000A + B - A = 999A + B.
По условию были даны различные числа 1000A₁ + B₁, 1000A₂ + B₂, 1000A₃ + B₃. Предположим, соответствующие им разности 999A₁ + B₁, 999A₂ + B₂, 999A₃ + B₃ равны.
999A₁ + B₁ = 999A₂ + B₂ ↔ 999(A₁ - A₂) = B₂ - B₁ Заметим, что если равны A, то из равенства последует, что равны и B, и, наоборот, из равенства B следует равенство A. При этом шестизначные числа равны, чего быть не должно. Значит, A₁ ≠ A₂, B₂ - B₁ должно делиться на 999. Поскольку B₁ и B₂ не превосходят 999, так может быть, только если |B₂ - B₁| = 999, одно из B равно 0, другое 999, при этом A отличаются на 1.
Аналогично, B₃ равно 0 или 999. Каждое из трёх B принимает одно из двух значений, по принципу Дирихле найдутся два числа, у которых B совпадают. Но тогда совпадают и A, а эти числа равны, что запрещено.
Число делится на 6, если оно делится на 2 и на 3. Число делится на 2, если оно чётное. Число делится на 3, если сумма цифр в числе делится на 3.
Вот и получается, что нам нужны чётные числа, сумма цифр в которых нацело делится на 3. У нас уже есть две цифры, сумма которых равна 12 (оно делится на 3). Значит, нужны ещё две цифры, сумма которых может составлять 0, 3, 6, 9, 12, 15, 18, но при этом вторая цифра чётная: 0 0, 3 0, 0 6, 6 0, 3 6, 9 0, 6 6, 9 6 В итоге получаются числа: 3090 3390 3096 3690 3396 3990 3696 3996
Скорость катера по течению 24 км / 2 ч = 12 км/ч. Скорость катера против течения 1 км / 10 мин = 6 км / 60 мин = 6 км/ч. Это значит, что скорость катера равна 9 км/ч, скорость течения 3 км/ч. Скорость по течению 9 + 3 = 12 км/ч, против течения 9 - 3 = 6 км/ч. 1) Расстояние от А до В равно 12*5 = 60 км, а не 120. 2) Плот пройдет от расстояние А до В за 60/3 = 20 часов - это верно. 3) Катер от А до В пройдет 60 км за 5 часов по течению, а потом от В до А 60 км за 10 часов против течения. Средняя скорость равна (60+60)/(5+10) = 120/15 = 8 км/ч. ответ: Верно только 2 утверждение.
По условию были даны различные числа 1000A₁ + B₁, 1000A₂ + B₂, 1000A₃ + B₃. Предположим, соответствующие им разности 999A₁ + B₁, 999A₂ + B₂, 999A₃ + B₃ равны.
999A₁ + B₁ = 999A₂ + B₂ ↔ 999(A₁ - A₂) = B₂ - B₁
Заметим, что если равны A, то из равенства последует, что равны и B, и, наоборот, из равенства B следует равенство A. При этом шестизначные числа равны, чего быть не должно. Значит, A₁ ≠ A₂, B₂ - B₁ должно делиться на 999. Поскольку B₁ и B₂ не превосходят 999, так может быть, только если |B₂ - B₁| = 999, одно из B равно 0, другое 999, при этом A отличаются на 1.
Аналогично, B₃ равно 0 или 999. Каждое из трёх B принимает одно из двух значений, по принципу Дирихле найдутся два числа, у которых B совпадают. Но тогда совпадают и A, а эти числа равны, что запрещено.
Значит, Незнайка ошибся в расчётах.