Дано неравенство: 6x² − x - 5 > 0.
Находим корни квадратного трёхчлена: 6x² − x - 5 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-1)^2-4*6*(-5)=1-4*6*(-5)=1-24*(-5)=1-(-24*5)=1-(-120)=1+120=121;
Дискриминант больше 0, уравнение имеет 2 корня:
x1=(√121-(-1))/(2*6)=(11-(-1))/(2*6)=(11+1)/(2*6)=12/(2*6)=12/12=1;
x2=(-√121-(-1))/(2*6)=(-11-(-1))/(2*6)=(-11+1)/(2*6)=-10/(2*6)=-10/12=-(5/6)≈-0.833333.
откуда x1 = 1 и x2 = -(5/6).
Раскладываем левую часть неравенства на множители: 6(x – 1) (x +(5/6)) > 0. Точки -5/6 и 1 разбивают ось X на три промежутка:
ОО⟶Х
-5/6 1
Точки -5/6 и 1 выколоты. Это связано с тем, что решаемое неравенство — строгое (так что x не может равняться -5/6 или 1). Далее определяем знаки левой части неравенства на каждом из промежутков
+ – +
ОО⟶Х
-5/6 1
Получаем: x < -5/6 или x > 1.
Пошаговое объяснение:
Для того, чтобы построить диаграмму, составим таблицу.
1) В нее внесем место отдыха, количество отдыхающих.
2) Рассчитаем общее количество отдыхающих, как сумму всех отдыхающих учащихся.
3) Найдем долю отдыхающих в каждом месте отдыха:
Боровое. Доля отдыхающих = 180/360 = 0,50.
Алаколь. Доля отдыхающих = 92/360 = 0,26.
и т.д.
3) По условию диаграмму строим круговую, поэтому рассчитаем угол в градусах, который соответствует каждому месту отдыха.
Полный круг = 360°.
Боровое. Доля отдыхающих = 0,5. Соответствующий угол = 360 * 0,5 = 180°.
Алаколь. Доля отдыхающих = 0,26. Соответствующий угол = 360 * 0,26 = 92°.
И т.д.
Результат представлен в приложении.
Числа на секторах диаграммы указывают число отдыхающих в соответствующем месте отдыха.
Маме 52 года
Дочери 22 года