если квадратный трехчлен aх2+bx+c представлен в виде a(х+p)2+q, где p и q — действительные числа, то говорят, что из квадратного трехчлена выделен квадрат двучлена.
покажем на примере как это преобразование делается.
выделим из трехчлена 2x2+12x+14 квадрат двучлена.
вынесем за скобки коэффициент a, т.е. 2:
2
x
2
+
12
x
+
14
=
2
(
x
2
+
6
x
+
7
)
преобразуем выражение в скобках.
для этого представим 6х в виде произведения 2*3*х, а затем прибавим и вычтем 32. получим:
2
(
x
2
+
2
⋅
3
⋅
x
+
3
2
−
3
2
+
7
)
=
2
(
(
x
+
3
)
2
−
3
2
+
7
)
=
=
2
(
(
x
+
3
)
2
−
2
)
=
2
(
x
+
3
)
2
−
4
т.о. мы выделили квадрат двучлена из квадратного трехчлена, и показоли, что:
2
x
2
+
12
x
+
14
=
2
(
x
+
3
)
2
−
4
разложение на множители квадратного трехчлена
если квадратный трехчлен aх2+bx+c представлен в виде a(х+n)(x+m), где n и m — действительные числа, то говорят, что выполнена операция разложения на множители квадратного трехчлена.
покажем на примере как это преобразование делается.
разложим квадратный трехчлен 2x2+4x-6 на множители.
вынесем за скобки коэффициент a, т.е. 2:
2
x
2
+
4
x
−
6
=
2
(
x
2
+
2
x
−
3
)
преобразуем выражение в скобках.
для этого представим 2х в виде разности 3x-1x, а -3 в виде -1*3. получим:
=
2
(
x
2
+
3
⋅
x
−
1
⋅
x
−
1
⋅
3
)
=
2
(
x
(
x
+
3
)
−
1
⋅
(
x
+
3
)
)
=
=
2
(
x
−
1
)
(
x
+
3
)
т.о. мы разложили на множители квадратный трехчлен, и показоли, что:
2
x
2
+
4
x
−
6
=
2
(
x
−
1
)
(
x
+
3
)
заметим, что разложение на множители квадратного трехчлена возможно только тогда, когда, квадратное уравнение, соответсвующее этому трехчлену имеет корни.
т.е. в нашем случае разложить на множители трехчлен 2x2+4x-6 возможно, если квадратное уравнение 2x2+4x-6 =0 имеет корни. в процессе разложения на множители мы установили, что уравнение 2x2+4x-6 =0 имеет два корня 1 и -3, т.к. при этих значениях уравнение 2(x-1)(x+3)=0 обращается в верное равенство
1) На заказ автобуса нужно 9000/45 = 200 руб с человека. На входной билет нужно 100 руб. На обед нужно еще 200 руб. Если автобус будет заполнен полностью, то каждому нужно 500 руб. В общем случае сумма равна 100 + 200 + 9000/n = 300 + 9000/n руб. 2) Если автобус заполнен на 2/3, то есть 45*2/3 = 30 чел, то нужно 300 + 9000/30 = 300 + 300 = 600 руб. 3) Если с каждого собрать по 700 руб = 300 + 9000/n, то n = 9000/(700 - 300) = 9000/400 = 90/4 = 22,5 = 23 человека. Если будет 22, то с каждого нужно 300 + 9000/22 = 300 + 409,09 = 709,09 ответ: минимум 23 человека.
2. Обнаружив добычу, он набирает высоту и стремительно пикирует вниз, ударяя ее сложенными и прижатыми к туловищу лапами. добычу - сущ., В.п. высоту - сущ., В.п. к туловищу - сущ., Д,п. лапами - сущ., Т.п.
3. Я начал со слов "Не малую скорость могут развивать альбатросы" а) парящие, часто, широкие, восходящих, совершать б) развивать - развИть, развИтие, океанические - океАн, водой - вОды, становятся- стать, кораблей - корАбль, легко - лЕгче, настигает - настИгнет, обгоняет - обгОн, широкие -ширь, восходящих - восхОд, в) кораблей - корабельный, легко - легонько г) полёт, использует, покачивая, покрывая
4. Ученик сделал не правильно, т.к. парИть - значит летать, а не от слова ПАР - пАриться. Это словарное слово - нужно запомнить.
9. Скорость иглохвостых стрижей может достигать до 170 км в час. Стрижи могут находиться в воздухе 2-4 года. В это время они всё проделывают в воздухе: спят, пьют, едят, купаются, строят гнезда. Стрижи - поистине асы неба, не зря говорят, что они - "дети воздуха".
10. Очень даже влияет. Загрязнение океана приведет к вымиранию этих птиц. Они питаются рыбой, кальмарами из океана, гнездятся в отдаленных островах океана и живут они там.
если квадратный трехчлен aх2+bx+c представлен в виде a(х+p)2+q, где p и q — действительные числа, то говорят, что из квадратного трехчлена выделен квадрат двучлена.
покажем на примере как это преобразование делается.
выделим из трехчлена 2x2+12x+14 квадрат двучлена.
вынесем за скобки коэффициент a, т.е. 2:
2
x
2
+
12
x
+
14
=
2
(
x
2
+
6
x
+
7
)
преобразуем выражение в скобках.
для этого представим 6х в виде произведения 2*3*х, а затем прибавим и вычтем 32. получим:
2
(
x
2
+
2
⋅
3
⋅
x
+
3
2
−
3
2
+
7
)
=
2
(
(
x
+
3
)
2
−
3
2
+
7
)
=
=
2
(
(
x
+
3
)
2
−
2
)
=
2
(
x
+
3
)
2
−
4
т.о. мы выделили квадрат двучлена из квадратного трехчлена, и показоли, что:
2
x
2
+
12
x
+
14
=
2
(
x
+
3
)
2
−
4
разложение на множители квадратного трехчлена
если квадратный трехчлен aх2+bx+c представлен в виде a(х+n)(x+m), где n и m — действительные числа, то говорят, что выполнена операция разложения на множители квадратного трехчлена.
покажем на примере как это преобразование делается.
разложим квадратный трехчлен 2x2+4x-6 на множители.
вынесем за скобки коэффициент a, т.е. 2:
2
x
2
+
4
x
−
6
=
2
(
x
2
+
2
x
−
3
)
преобразуем выражение в скобках.
для этого представим 2х в виде разности 3x-1x, а -3 в виде -1*3. получим:
=
2
(
x
2
+
3
⋅
x
−
1
⋅
x
−
1
⋅
3
)
=
2
(
x
(
x
+
3
)
−
1
⋅
(
x
+
3
)
)
=
=
2
(
x
−
1
)
(
x
+
3
)
т.о. мы разложили на множители квадратный трехчлен, и показоли, что:
2
x
2
+
4
x
−
6
=
2
(
x
−
1
)
(
x
+
3
)
заметим, что разложение на множители квадратного трехчлена возможно только тогда, когда, квадратное уравнение, соответсвующее этому трехчлену имеет корни.
т.е. в нашем случае разложить на множители трехчлен 2x2+4x-6 возможно, если квадратное уравнение 2x2+4x-6 =0 имеет корни. в процессе разложения на множители мы установили, что уравнение 2x2+4x-6 =0 имеет два корня 1 и -3, т.к. при этих значениях уравнение 2(x-1)(x+3)=0 обращается в верное равенство