1. квадрат;
2. прямоугольник
Дан квадрат ABCD , прямоугольник ABCD; AC и BD - диагонали.
Точка пересечения диагоналей прямоугольника ( и квадрата. т.к. любой квадрат является прямоугольником) называется центром прямоугольника и также является центром описанной окружности. Диагональ является диаметром описанной возле этого прямоугольника окружности.
3. Дан треугольник АВС; |AB|=|BC|=5 см, |BC|=3 см
Провести перпендикуляр к середине каждой стороны треугольника. Точка пересечения серединных перпендикуляров является центром окружности, описанной возле треугольника.
Поскольку, любая точка серединного перпендикуляра равноудалена от концов этой стороны, то точка пересечения серединных перпендикуляров 3-х сторон является также и центром самого треугольника, так, как она равноудалена от 3-х вершин треугольника.
Рисунок во вложении
*равна
1) 48 : 12 = 4 (см) это ширина
2) (12 + 4) * 2 = 32 (см)
выражение: (12 + 48:12) * 2 = 32
ответ: периметр прямоугольника 32 см.