где под
подразумевается квадрат переменной
т.е.
а его корнями
– квадраты искомых корней, если они различны, или его чётным корнем
если корень биквадратного трёхчлена
– единственный.
тогда
Потребуем, чтобы
откуда следует, что 
а корень биквадратного трёхчлена станет чётным
давая два искомых корня
Это значение
как раз уже и есть одно из искомых решений для параметра 
всегда будет два – левый и правый (меньший и больший), однако при некоторых обстоятельствах левый квадрат искомых корней будет отрицательным, а значит, не будет давать пару искомых корней. Среднеарифметическое квадратов искомых корней
по теореме Виета, в применении к биквадратному уравнению, будет равно числу, противоположному половине среднего коэффициента, т.е. оно равно
Отсюда следует, что правый квадрат искомых корней
– всегда положителен, а значит, всегда даёт два корня при положительном дискриминанте.
А значит, значение всего трёхчлена
взятое от
должно давать отрицательное значение, т.е. располагается в нижней межкорневой дуге параболы биквадратного трёхчлена.
;
;
;
1) на 10см или на 1дм
2) на 2ц илм на 200 кг
3)на 6 дм или на 600 мм
4)на 2 суток илм на 48 часов
5)на 6000м или на 6км
6)на 4ч или на 240 мин
7)на 20мм илм на 2см
8)на 6т илм на 60ц
9) на 4 мин или на 240с