ответ: -∞.
Пошаговое объяснение:
Обозначим g(x)=e^(1/x)-1 и h(x)=arctg(x²)-π/2. По правилу Лопиталя, lim (x⇒∞) g(x)/h(x)=lim (x⇒∞) g'(x)/h'(x). Так как g'(x)=-1/x²*e^(1/x), а h'(x)=2*x/(1+x⁴), то g'(x)/h'(x)=-e^(1/x)*(1+x⁴)/(2*x³). Так как предел первого множителя при x⇒∞ равен -1, то искомый предел равен пределу дроби (1+x⁴)/(2*x³), взятому с обратным знаком. Разделив числитель и знаменатель дроби на x³, получим выражение (1/x³+x)/2. Очевидно, что предел этого выражения при x⇒∞ равен (0+∞)/2=∞, а потому искомый предел равен -∞.
ответ: -∞.
Пошаговое объяснение:
Обозначим g(x)=e^(1/x)-1 и h(x)=arctg(x²)-π/2. По правилу Лопиталя, lim (x⇒∞) g(x)/h(x)=lim (x⇒∞) g'(x)/h'(x). Так как g'(x)=-1/x²*e^(1/x), а h'(x)=2*x/(1+x⁴), то g'(x)/h'(x)=-e^(1/x)*(1+x⁴)/(2*x³). Так как предел первого множителя при x⇒∞ равен -1, то искомый предел равен пределу дроби (1+x⁴)/(2*x³), взятому с обратным знаком. Разделив числитель и знаменатель дроби на x³, получим выражение (1/x³+x)/2. Очевидно, что предел этого выражения при x⇒∞ равен (0+∞)/2=∞, а потому искомый предел равен -∞.
1.
204620482064208424062408246024682480248626042608264026482680268440264028406240824206420842604268428042864608468048064860604860846408648068046840804680648406846086048640 и т.д.тут больше 3-х но и это не всё ( тут я использовала только чётные цифры (0,2,4,6,8))
2.
24602480264026804260428046204680482048603.
123450123540124530124350125340125430132450142350143250213450231450 и т.д.надеюсь, что этого достаточно))