а) (х+1)²>0 х∈(-∞;-1)∪(-1;+∞), т.к. при х=-1 левая часть обращается в нуль. но нуль не может быть больше нуля. ответ объединение двух промежутков.
б) 4х²-х+9<0 дискриминант левой части равен 1-4*36<0 a=4>0, значит, для любого действительного х левая часть неравенства больше нуля. нулю она тоже не равна. т.к. дискриминант меньше нуля. а это означает. что неравенство не имеет решений.
с) -х²+4х-7=0, дискриминант 16-28 отрицательный. значит. парабола не пересекается с осью ох, находится ниже оси. т.к. первый коэффициент равен минус один, ветви направлены вниз, значит, для любого х левая часть меньше, а не больше нуля. т.е. неравенство решений не имеет.
д) (х-3)(х+3)<0 решим методом интервалов. корни левой части ±3
___-33
+ - +
х∈(-3;3)
Пошаговое объяснение:
Разобьём всех гномов по тройкам, чтобы найти сколько из них могут стоять между гномами в колпаках одного цвета:
105:3=35, а нужно 67. Значит надо добавить к 32 тройкам по гному в таком же колпаке. Получается 32 квартета одного цвета и 3 тройки:
3×3+32×4=137.
31 гном лишний, т. е. 8 квартетов подряд должны быть одного цвета. Остаётся 16 квартетов и 3 тройки, из которых две соседние тройки должны быть одного цвета. Итак имеем 8 соседних квартетов одного цвета, 2 соседних тройки одного цвета, а также 16 квартетов и тройка разных цветов. Или всего имеем 27 наборов разных цветов. Если разместить их по кругу, то первый и последний наборы должны быть разных цветов. То есть красных наборов может быть (27-1):2=13. С каждой стороны красных наборов будут не красные наборы. Таким образом максимум 26 гномов в красных колпаках могут иметь соседа не в красном колпаке.