Как доказать тождество?
Чтобы доказать тождество нужно доказать, что его правая и левая части равны, т.е. свести его к виду «выражение» = «такое же выражение».
В случаях, когда тождество не содержит переменных и иррациональности, можно вычислить правую и левую части.
Пример. Доказать тождество
(
2
,
5
+
5
⋅
6
15
)
2
=
22
−
1
,
75
.
(
2
,
5
+
5
⋅
6
15
)
2
=
22
−
1
,
75
(
2
,
5
+
6
3
)
2
=
20
,
25
(
2
,
5
+
2
)
2
=
20
,
25
(
4
,
5
)
2
=
20
,
25
20
,
25
=
20
,
25
Тождество доказано.
В более сложных случаях, доказывая тождество, приходится прибегать к преобразованиям, потому что посчитать «в лоб» уже нельзя. При этом можно:
Преобразовывать обе части одновременно (как в примере выше).
Преобразовывать только левую или только правую часть.
Переносить слагаемые через равно, меняя знак.
Умножать левую и правую часть на одно и то же число.
Использовать все математические правила и формулы (формулы сокращенного умножения, свойства степени, правила работы с дробями и разложения на множители и так далее и тому подобное). Именно пятый пункт при доказательстве тождеств используется чаще всего, поэтому все эти свойства и правила нужно знать, помнить и уметь использовать.
Пример. Доказать тождество
(
a
+
b
)
2
+
(
a
−
b
)
2
=
2
(
a
2
+
b
2
)
.
(
a
+
b
)
2
+
(
a
−
b
)
2
=
2
(
a
2
+
b
2
)
Работаем с левой частью, не трогая правую.
С формул сокращенного умножения раскроем скобки слева,…
a
2
+
2
a
b
+
b
2
+
a
2
−
2
a
b
+
b
2
=
2
(
a
2
+
b
2
)
…затем приводим подобные слагаемые,…
2
a
2
+
2
b
2
=
2
(
a
2
+
b
2
)
…после чего вынесем за скобку двойку.
2
(
a
2
+
b
2
)
=
2
(
a
2
+
b
2
)
Обе части равны - тождество доказано
Пример. Доказать тождество
x
2
+
1
x
2
=
(
x
+
1
x
)
2
−
2
.
x
2
+
1
x
2
=
(
x
+
1
x
)
2
−
2
Преобразуем правую часть, не трогая левую.
Раскроем скобки с формулы квадрата суммы,…
x
2
+
1
x
2
=
x
2
+
2
x
⋅
1
x
+
1
x
2
−
2
…у одно из слагаемых, сократив
x
и
1
x
, …
x
2
+
1
x
2
=
x
2
+
2
+
1
x
2
−
2
… и приводим подобные слагаемые (
2
и
−
2
).
x
2
+
1
x
2
=
x
2
+
1
x
2
Слева и справа одинаковые выражения, значит тождество доказано.
ВОТ ТЕ ПОДСКАЗКА КАК ДЕЛАТЬ)))
найдіть усі значення m при яких вектори
a(m ; 5 - m ; 3) і b (2 ;7m+1; 5+ m) колінеарні
Два вектора коллинеарны, если отношения их координат равны.
Следовательно : m / 2 = (5 - m) / (7m + 1) = 3/ (5 + m)
СИСТЕМА УРАВНЕНИЙ :
{ m / 2 = (5 - m) / (7m + 1) ; { 7m² + m = 10 -2m ; { 7m²+ 3m - 10 =0 ;
{ m / 2 = 3/(5+m) . { m² + 5m = 6. { m² + 5m - 6 =0 .
- - - - - - -
{ m = - 10/7 или m = 1 ;
{ m = - 6 или m = 1 .
ответ : 1 .
* * * 7m² + 3m - 10 = 0 D = 3² - 4*7*(-10) =9+280 =289 =17²
m ₁,₂ = (- 3 ± 17)/(2*7)
значит один шар из 15.
вероятность одна пятнадцатая.